{"title":"Clinical Application of Artificial Intelligence in Ultrasound Imaging for Oncology.","authors":"Masaaki Komatsu, Naoki Teraya, Takashi Natsume, Naoaki Harada, Katsuji Takeda, Ryuji Hamamoto","doi":"10.31662/jmaj.2024-0203","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound (US) imaging is a widely used tool in oncology because of its noninvasiveness and real-time performance. However, its diagnostic accuracy can be limited by the skills of the examiner when performing manual scanning and by the presence of acoustic shadows that degrade image quality. Artificial intelligence (AI) technologies can support examiners in cancer screening and diagnosis by addressing these limitations. Here, we examine recent advances in AI research and development for US imaging in oncology. Breast cancer has been the most extensively studied cancer, with research predominantly focusing on tumor detection, differentiation between benign and malignant lesions, and prediction of lymph node metastasis. The American College of Radiology developed a medical imaging reporting and data system for various cancers that is often used to evaluate the accuracy of AI models. We will also explore the application of AI in clinical settings for US imaging in oncology. Despite progress, the number of approved AI-equipped software as medical devices for US imaging remains limited in Japan, the United States, and Europe. Practical issues that need to be addressed for clinical application include domain shifts, black boxes, and acoustic shadows. To address these issues, advances in image quality control, AI explainability, and preprocessing of acoustic shadows are essential.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"18-25"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound (US) imaging is a widely used tool in oncology because of its noninvasiveness and real-time performance. However, its diagnostic accuracy can be limited by the skills of the examiner when performing manual scanning and by the presence of acoustic shadows that degrade image quality. Artificial intelligence (AI) technologies can support examiners in cancer screening and diagnosis by addressing these limitations. Here, we examine recent advances in AI research and development for US imaging in oncology. Breast cancer has been the most extensively studied cancer, with research predominantly focusing on tumor detection, differentiation between benign and malignant lesions, and prediction of lymph node metastasis. The American College of Radiology developed a medical imaging reporting and data system for various cancers that is often used to evaluate the accuracy of AI models. We will also explore the application of AI in clinical settings for US imaging in oncology. Despite progress, the number of approved AI-equipped software as medical devices for US imaging remains limited in Japan, the United States, and Europe. Practical issues that need to be addressed for clinical application include domain shifts, black boxes, and acoustic shadows. To address these issues, advances in image quality control, AI explainability, and preprocessing of acoustic shadows are essential.