Pathology Foundation Models.

IF 1.5 Q2 MEDICINE, GENERAL & INTERNAL
JMA journal Pub Date : 2025-01-15 Epub Date: 2024-12-20 DOI:10.31662/jmaj.2024-0206
Mieko Ochi, Daisuke Komura, Shumpei Ishikawa
{"title":"Pathology Foundation Models.","authors":"Mieko Ochi, Daisuke Komura, Shumpei Ishikawa","doi":"10.31662/jmaj.2024-0206","DOIUrl":null,"url":null,"abstract":"<p><p>Pathology plays a crucial role in diagnosing and evaluating patient tissue samples obtained via surgeries and biopsies. The advent of whole slide scanners and the development of deep learning technologies have considerably advanced this field, promoting extensive research and development in pathology artificial intelligence (AI). These advancements have contributed to reduced workload of pathologists and supported decision-making in treatment plans. Large-scale AI models, known as foundation models (FMs), are more accurate and applicable to various tasks than traditional AI. Such models have recently emerged and expanded their application scope in healthcare. Numerous FMs have been developed in pathology, with reported applications in various tasks, such as disease and rare cancer diagnoses, patient survival prognosis prediction, biomarker expression prediction, and scoring of the immunohistochemical expression intensity. However, several challenges persist in the clinical application of FMs, which healthcare professionals, as users, must be aware of. Research to address these challenges is ongoing. In the future, the development of generalist medical AI, which integrates pathology FMs with FMs from other medical domains, is expected to progress, effectively utilizing AI in real clinical settings to promote precision and personalized medicine.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"121-130"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pathology plays a crucial role in diagnosing and evaluating patient tissue samples obtained via surgeries and biopsies. The advent of whole slide scanners and the development of deep learning technologies have considerably advanced this field, promoting extensive research and development in pathology artificial intelligence (AI). These advancements have contributed to reduced workload of pathologists and supported decision-making in treatment plans. Large-scale AI models, known as foundation models (FMs), are more accurate and applicable to various tasks than traditional AI. Such models have recently emerged and expanded their application scope in healthcare. Numerous FMs have been developed in pathology, with reported applications in various tasks, such as disease and rare cancer diagnoses, patient survival prognosis prediction, biomarker expression prediction, and scoring of the immunohistochemical expression intensity. However, several challenges persist in the clinical application of FMs, which healthcare professionals, as users, must be aware of. Research to address these challenges is ongoing. In the future, the development of generalist medical AI, which integrates pathology FMs with FMs from other medical domains, is expected to progress, effectively utilizing AI in real clinical settings to promote precision and personalized medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信