AI in Echocardiography: State-of-the-art Automated Measurement Techniques and Clinical Applications.

IF 1.5 Q2 MEDICINE, GENERAL & INTERNAL
JMA journal Pub Date : 2025-01-15 Epub Date: 2024-12-06 DOI:10.31662/jmaj.2024-0180
Yukina Hirata, Kenya Kusunose
{"title":"AI in Echocardiography: State-of-the-art Automated Measurement Techniques and Clinical Applications.","authors":"Yukina Hirata, Kenya Kusunose","doi":"10.31662/jmaj.2024-0180","DOIUrl":null,"url":null,"abstract":"<p><p>The artificial intelligence (AI) technology in automated measurements has seen remarkable advancements across various vendors, thereby offering new opportunities in echocardiography. Fully automated software particularly has the potential to elevate the analysis and the interpretation of medical images to a new level compared to previous algorithms. Tasks that traditionally required significant time, such as ventricular and atrial volume measurements and Doppler tracing, can now be performed swiftly through AI's automated phase setting and waveform tracing capabilities. The benefits of AI-driven systems include high-precision and reliable measurements, significant time savings, and enhanced workflow efficiency. By automating routine tasks, AI can reduce the burden on clinicians, allowing them to gather additional information, perform additional tests, and improve patient care. While many studies confirm the accuracy and the reproducibility of AI-driven techniques, it is crucial for clinicians to verify AI-generated measurements and ensure high-quality imaging and Doppler waveforms to fully take advantage of the benefits from these technologies. This review discusses the current state of AI-driven automated measurements in echocardiography, their impact on clinical practice, and the strategies required for the effective integration of AI into clinical workflows.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"141-150"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

The artificial intelligence (AI) technology in automated measurements has seen remarkable advancements across various vendors, thereby offering new opportunities in echocardiography. Fully automated software particularly has the potential to elevate the analysis and the interpretation of medical images to a new level compared to previous algorithms. Tasks that traditionally required significant time, such as ventricular and atrial volume measurements and Doppler tracing, can now be performed swiftly through AI's automated phase setting and waveform tracing capabilities. The benefits of AI-driven systems include high-precision and reliable measurements, significant time savings, and enhanced workflow efficiency. By automating routine tasks, AI can reduce the burden on clinicians, allowing them to gather additional information, perform additional tests, and improve patient care. While many studies confirm the accuracy and the reproducibility of AI-driven techniques, it is crucial for clinicians to verify AI-generated measurements and ensure high-quality imaging and Doppler waveforms to fully take advantage of the benefits from these technologies. This review discusses the current state of AI-driven automated measurements in echocardiography, their impact on clinical practice, and the strategies required for the effective integration of AI into clinical workflows.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信