{"title":"The Era of Preemptive Medicine: Developing Medical Digital Twins through Omics, IoT, and AI Integration.","authors":"Tadao Ooka","doi":"10.31662/jmaj.2024-0213","DOIUrl":null,"url":null,"abstract":"<p><p>Preemptive medicine represents a paradigm shift from reactive treatment to proactive disease prevention. The integration of omics technologies, the Internet of Things (IoT), and artificial intelligence (AI) has facilitated the development of personalized, predictive, and preemptive healthcare strategies. Omic technologies, such as genomics, proteomics, and metabolomics, provide comprehensive insights into molecular profile of an individual, revealing potential disease predispositions and health trajectories. IoT devices, such as wearables and smartphones, enable continuous and periodic monitoring of physiological parameters, thus providing a dynamic view of an individual's health status. AI algorithms analyze comprehensive and complex data from omics and IoT technologies to identify patterns and correlations that inform predictive models of disease risk, progression, and response to interventions. Medical digital twins, or virtual replicas of an individual's biological processes, have emerged as the cornerstone of preemptive medicine. The integration of omics, IoT, and AI enables the development of medical digital twins, which in turn allows for precise simulation of human physiological profiles, prediction of future health outcomes, and virtual individual clinical trials, facilitating personalized proactive interventions and preemptive disease control. This review demonstrates the convergence of omics, IoT, and AI in preemptive medicine, highlighting their potential to revolutionize healthcare by enabling early disease detection, personalized treatment strategies, and chronic disease prevention. We show how AI leverages omics and IoT in preemptive medicine through several case studies while also discussing the necessary data for developing medical digital twins and addressing ethical and social aspects that warrant consideration. Medical digital twins signify a fundamental transformation in health management, shifting from treating diseases after their occurrence to controlling them before their occurrence. This approach enhances the effectiveness of medical interventions and improves overall health outcomes, preparing for a healthier future.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"1-10"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Preemptive medicine represents a paradigm shift from reactive treatment to proactive disease prevention. The integration of omics technologies, the Internet of Things (IoT), and artificial intelligence (AI) has facilitated the development of personalized, predictive, and preemptive healthcare strategies. Omic technologies, such as genomics, proteomics, and metabolomics, provide comprehensive insights into molecular profile of an individual, revealing potential disease predispositions and health trajectories. IoT devices, such as wearables and smartphones, enable continuous and periodic monitoring of physiological parameters, thus providing a dynamic view of an individual's health status. AI algorithms analyze comprehensive and complex data from omics and IoT technologies to identify patterns and correlations that inform predictive models of disease risk, progression, and response to interventions. Medical digital twins, or virtual replicas of an individual's biological processes, have emerged as the cornerstone of preemptive medicine. The integration of omics, IoT, and AI enables the development of medical digital twins, which in turn allows for precise simulation of human physiological profiles, prediction of future health outcomes, and virtual individual clinical trials, facilitating personalized proactive interventions and preemptive disease control. This review demonstrates the convergence of omics, IoT, and AI in preemptive medicine, highlighting their potential to revolutionize healthcare by enabling early disease detection, personalized treatment strategies, and chronic disease prevention. We show how AI leverages omics and IoT in preemptive medicine through several case studies while also discussing the necessary data for developing medical digital twins and addressing ethical and social aspects that warrant consideration. Medical digital twins signify a fundamental transformation in health management, shifting from treating diseases after their occurrence to controlling them before their occurrence. This approach enhances the effectiveness of medical interventions and improves overall health outcomes, preparing for a healthier future.