Medical AI and AI for Medical Sciences.

IF 1.5 Q2 MEDICINE, GENERAL & INTERNAL
JMA journal Pub Date : 2025-01-15 Epub Date: 2024-11-25 DOI:10.31662/jmaj.2024-0185
Kazuhiro Sakurada, Tetsuo Ishikawa, Junna Oba, Masahiro Kuno, Yuji Okano, Tomomi Sakamaki, Tomohiro Tamura
{"title":"Medical AI and AI for Medical Sciences.","authors":"Kazuhiro Sakurada, Tetsuo Ishikawa, Junna Oba, Masahiro Kuno, Yuji Okano, Tomomi Sakamaki, Tomohiro Tamura","doi":"10.31662/jmaj.2024-0185","DOIUrl":null,"url":null,"abstract":"<p><p>Digital transformation of healthcare is rapidly progressing. Digital transformation improves the quality of services and access to health information for users, reduces the workload and associated costs for healthcare providers, and supports clinical decision-making. Data and artificial intelligence (AI) play a key role in this process. The AI used for this purpose is called medical AI. Medical AI is currently undergoing a shift from task-specific to general-purpose models. Large language models have the potential to systematize existing medical knowledge in a standardized way. The usage of AI in medicine is not limited to digital transformation; it plays a pivotal role in fundamentally changing the state of medical science. This approach, known as \"AI for Medical Science,\" focuses on pioneering a form of medical science that predicts the onset and progression of disease based on the underlying causes of disease. The key to such predictive medicine is the concept of \"states,\" which can be sought through machine learning. Using states instead of symptoms not only dramatically improves the accuracy of identification (diagnosis) and prediction (prognosis) but also potentially pioneers P4 medicine by integrating it with empirical knowledge and theories based on natural principles.</p>","PeriodicalId":73550,"journal":{"name":"JMA journal","volume":"8 1","pages":"26-37"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMA journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31662/jmaj.2024-0185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Digital transformation of healthcare is rapidly progressing. Digital transformation improves the quality of services and access to health information for users, reduces the workload and associated costs for healthcare providers, and supports clinical decision-making. Data and artificial intelligence (AI) play a key role in this process. The AI used for this purpose is called medical AI. Medical AI is currently undergoing a shift from task-specific to general-purpose models. Large language models have the potential to systematize existing medical knowledge in a standardized way. The usage of AI in medicine is not limited to digital transformation; it plays a pivotal role in fundamentally changing the state of medical science. This approach, known as "AI for Medical Science," focuses on pioneering a form of medical science that predicts the onset and progression of disease based on the underlying causes of disease. The key to such predictive medicine is the concept of "states," which can be sought through machine learning. Using states instead of symptoms not only dramatically improves the accuracy of identification (diagnosis) and prediction (prognosis) but also potentially pioneers P4 medicine by integrating it with empirical knowledge and theories based on natural principles.

医学人工智能和医学科学人工智能。
医疗保健的数字化转型正在迅速发展。数字化转型提高了服务质量和用户对健康信息的访问,减少了医疗保健提供者的工作量和相关成本,并支持临床决策。数据和人工智能(AI)在这一过程中发挥着关键作用。用于此目的的人工智能被称为医疗人工智能。医疗人工智能目前正在经历从特定任务到通用模型的转变。大型语言模型具有以标准化方式将现有医学知识系统化的潜力。人工智能在医学中的应用并不局限于数字化转型;它在从根本上改变医学现状方面起着关键作用。这种方法被称为“医学人工智能”(AI for Medical Science),其重点是开创一种医学科学形式,根据疾病的潜在原因预测疾病的发生和进展。这种预测医学的关键是“状态”的概念,可以通过机器学习来寻找。使用状态而不是症状不仅大大提高了识别(诊断)和预测(预后)的准确性,而且通过将其与基于自然原理的经验知识和理论相结合,有可能成为P4医学的先驱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信