A Novel Pathogenic Splicing Mutation of OFD1 is Responsible for a Boy with Joubert Syndrome Exhibiting Orofaciodigital Spectrum Anomalies, Polydactyly and Retinitis Pigmentosa.

IF 1.8 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Pharmacogenomics & Personalized Medicine Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.2147/PGPM.S501623
Liang Chen, Mei-Fang Zhao, Hui-Wen Deng, Min Liao, Liang-Liang Fan, Qi-Bao Zhong, Jun Wang, Ke Li, Zheng-Hui Wu, Jian-Yin Yin
{"title":"A Novel Pathogenic Splicing Mutation of <i>OFD1</i> is Responsible for a Boy with Joubert Syndrome Exhibiting Orofaciodigital Spectrum Anomalies, Polydactyly and Retinitis Pigmentosa.","authors":"Liang Chen, Mei-Fang Zhao, Hui-Wen Deng, Min Liao, Liang-Liang Fan, Qi-Bao Zhong, Jun Wang, Ke Li, Zheng-Hui Wu, Jian-Yin Yin","doi":"10.2147/PGPM.S501623","DOIUrl":null,"url":null,"abstract":"<p><p>Joubert syndrome (JS) is an infrequent congenital neurodevelopmental ciliopathy, typically identified in children around the average age of 33 months. This disorder is characterized by developmental delay, cognitive impairment, and infantile hypotonia that may evolve into ataxia. Mutations in <i>OFD1</i> results in Joubert syndrome with a variety of phenotypes. Here, we identified a child who presented with Joubert syndrome exhibiting orofaciodigital spectrum anomalies, polydactyly, and retinitis pigmentosa. Whole exome sequencing and Sanger sequencing revealed a splicing mutation (NM_003611.2, c.2387+1G>A) in the <i>OFD1</i> gene of the patient and his mother. mRNA sequencing further confirmed this mutation. However, since the patient is homozygous and the mother is heterozygous, only the patient has the phenotype and the mother is normal. This mutation can lead to the loss of sixth coiled-coil domains of OFD1 protein, which further disrupt the ciliary signaling pathway and Hedgehog signaling pathway. This study presents a new case of JS and expands the mutant spectrum of <i>OFD1</i>, but also enhances our understanding of the mechanism by which <i>OFD1</i> is associated with ciliosis.</p>","PeriodicalId":56015,"journal":{"name":"Pharmacogenomics & Personalized Medicine","volume":"18 ","pages":"47-53"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics & Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/PGPM.S501623","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Joubert syndrome (JS) is an infrequent congenital neurodevelopmental ciliopathy, typically identified in children around the average age of 33 months. This disorder is characterized by developmental delay, cognitive impairment, and infantile hypotonia that may evolve into ataxia. Mutations in OFD1 results in Joubert syndrome with a variety of phenotypes. Here, we identified a child who presented with Joubert syndrome exhibiting orofaciodigital spectrum anomalies, polydactyly, and retinitis pigmentosa. Whole exome sequencing and Sanger sequencing revealed a splicing mutation (NM_003611.2, c.2387+1G>A) in the OFD1 gene of the patient and his mother. mRNA sequencing further confirmed this mutation. However, since the patient is homozygous and the mother is heterozygous, only the patient has the phenotype and the mother is normal. This mutation can lead to the loss of sixth coiled-coil domains of OFD1 protein, which further disrupt the ciliary signaling pathway and Hedgehog signaling pathway. This study presents a new case of JS and expands the mutant spectrum of OFD1, but also enhances our understanding of the mechanism by which OFD1 is associated with ciliosis.

一种新的致病性OFD1剪接突变导致一名患有Joubert综合征的男孩表现出口面数字谱异常、多指畸形和视网膜色素变性。
Joubert综合征(JS)是一种罕见的先天性神经发育性纤毛病,通常在平均年龄33个月左右的儿童中发现。这种疾病的特征是发育迟缓、认知障碍和可能演变为共济失调的婴儿张力过低。OFD1突变导致Joubert综合征具有多种表型。在这里,我们确定了一个儿童谁提出的Joubert综合征表现为口面数字频谱异常,多指畸形和视网膜色素变性。全外显子组测序和Sanger测序显示患者及其母亲的OFD1基因存在剪接突变(NM_003611.2, c.2387+1G> a)。mRNA测序进一步证实了这一突变。但是,由于患者是纯合子,母亲是杂合子,所以只有患者有表型,母亲是正常的。该突变可导致OFD1蛋白的第6个螺旋结构域丢失,进一步破坏纤毛信号通路和Hedgehog信号通路。本研究提出了一个新的JS病例,扩展了OFD1的突变谱,同时也增强了我们对OFD1与纤毛病相关机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmacogenomics & Personalized Medicine
Pharmacogenomics & Personalized Medicine Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
3.30
自引率
5.30%
发文量
110
审稿时长
16 weeks
期刊介绍: Pharmacogenomics and Personalized Medicine is an international, peer-reviewed, open-access journal characterizing the influence of genotype on pharmacology leading to the development of personalized treatment programs and individualized drug selection for improved safety, efficacy and sustainability. In particular, emphasis will be given to: Genomic and proteomic profiling Genetics and drug metabolism Targeted drug identification and discovery Optimizing drug selection & dosage based on patient''s genetic profile Drug related morbidity & mortality intervention Advanced disease screening and targeted therapeutic intervention Genetic based vaccine development Patient satisfaction and preference Health economic evaluations Practical and organizational issues in the development and implementation of personalized medicine programs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信