Computational Bayesian inference for active sonar localization under uncertainty in sound speed profile.

IF 1.2 Q3 ACOUSTICS
Abner C Barros, Paul J Gendron
{"title":"Computational Bayesian inference for active sonar localization under uncertainty in sound speed profile.","authors":"Abner C Barros, Paul J Gendron","doi":"10.1121/10.0035808","DOIUrl":null,"url":null,"abstract":"<p><p>A computational Bayesian approach is presented to address active sonar localization under the challenges of small receive aperture, uncertain sound speed profile (SSP), and limited coherence time. The approach draws inference on wavevectors associated with the closely spaced angle/Doppler spread arrivals, characterizing the scattered acoustic field. The wavevector posterior density is mapped to the scattering body's location and speed under an uncertain SSP using eigenray interpolation and marginalization. SSP uncertainty is captured by a multivariate Gaussian and a low-dimensional subspace mode representation. A case study using SSPs from the Mediterranean Sea demonstrates the efficacy of this approach.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0035808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A computational Bayesian approach is presented to address active sonar localization under the challenges of small receive aperture, uncertain sound speed profile (SSP), and limited coherence time. The approach draws inference on wavevectors associated with the closely spaced angle/Doppler spread arrivals, characterizing the scattered acoustic field. The wavevector posterior density is mapped to the scattering body's location and speed under an uncertain SSP using eigenray interpolation and marginalization. SSP uncertainty is captured by a multivariate Gaussian and a low-dimensional subspace mode representation. A case study using SSPs from the Mediterranean Sea demonstrates the efficacy of this approach.

本文介绍了一种计算贝叶斯方法,用于在接收孔径小、声速剖面(SSP)不确定和相干时间有限的情况下解决主动声纳定位问题。该方法对与紧密间隔的角度/多普勒扩散到达相关的波向量进行推断,从而确定散射声场的特征。在不确定的 SSP 条件下,利用特征射线插值和边际化将波向量后密度映射到散射体的位置和速度。通过多变量高斯和低维子空间模式表示捕捉 SSP 的不确定性。利用地中海的 SSP 进行的案例研究证明了这种方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信