Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-06-01 Epub Date: 2025-02-10 DOI:10.1007/s11010-024-05196-6
Xinyi Li, Shunlin Qu
{"title":"Novel insights into the central protective role of ACE2 in diabetic cardiomyopathy: from underlying signaling pathways to therapeutic perspectives.","authors":"Xinyi Li, Shunlin Qu","doi":"10.1007/s11010-024-05196-6","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3535-3551"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05196-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic cardiomyopathy (DCM) is a cardiac complication specific to individuals with diabetes. It is defined as abnormalities of myocardial structure and function in diabetic patients who do not exhibit any obvious coronary artery disease, hypertensive heart disease, valvular heart disease, or inherited cardiomyopathy. A significant cardiovascular protective factor identified recently is angiotensin-converting enzyme 2 (ACE2), which is a rising star in the renin angiotensin system (RAS) and is responsible for the onset and progression of DCM. Nonetheless, there is not a comprehensive review outlining ACE2's effect on DCM. From the perspective of the pathogenesis of DCM, this review summarizes the myocardial protective role of ACE2 in the aspects of alleviating myocardial structure and dysfunction, correcting energy metabolism disorders, and restoring vascular function. Concurrently, we propose the connections between ACE2 and underlying signaling pathways, including ADAM17, Apelin/APJ, and Nrf2. Additionally, we highlight ACE2-related pharmaceutical treatment options and clinical application prospects for preventing and managing DCM. Further and underlying research is extensively required to completely comprehend the principal pathophysiological mechanism of DCM and the distinctive function of ACE2, switching experimental findings into clinical practice and identifying efficient therapeutic approaches.

ACE2在糖尿病心肌病中的中心保护作用的新见解:从潜在的信号通路到治疗的角度。
糖尿病性心肌病(DCM)是糖尿病患者特有的心脏并发症。它的定义是在没有明显冠状动脉疾病、高血压心脏病、瓣膜性心脏病或遗传性心肌病的糖尿病患者中出现心肌结构和功能异常。最近发现的一个重要的心血管保护因子是血管紧张素转换酶2 (ACE2),它是肾素血管紧张素系统(RAS)中的新星,与DCM的发生和发展有关。然而,并没有一个全面的综述概述ACE2对DCM的影响。本文从DCM的发病机制出发,综述ACE2在缓解心肌结构及功能障碍、纠正能量代谢紊乱、恢复血管功能等方面的心肌保护作用。同时,我们提出了ACE2与包括ADAM17、Apelin/APJ和Nrf2在内的潜在信号通路之间的联系。此外,我们强调了ace2相关的药物治疗方案和预防和管理DCM的临床应用前景。为了全面了解DCM的主要病理生理机制和ACE2的独特功能,将实验发现转化为临床实践,并找到有效的治疗方法,还需要进一步的基础研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信