Classification of acute myeloid leukemia based on multi-omics and prognosis prediction value.

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Molecular Oncology Pub Date : 2025-06-01 Epub Date: 2025-02-10 DOI:10.1002/1878-0261.70000
Yang Song, Zhe Wang, Guangji Zhang, Jiangxue Hou, Kaiqi Liu, Shuning Wei, Yan Li, Chunlin Zhou, Dong Lin, Min Wang, Hui Wei, Jianxiang Wang, Tao Cheng, Yingchang Mi
{"title":"Classification of acute myeloid leukemia based on multi-omics and prognosis prediction value.","authors":"Yang Song, Zhe Wang, Guangji Zhang, Jiangxue Hou, Kaiqi Liu, Shuning Wei, Yan Li, Chunlin Zhou, Dong Lin, Min Wang, Hui Wei, Jianxiang Wang, Tao Cheng, Yingchang Mi","doi":"10.1002/1878-0261.70000","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a heterogeneous cancer, making outcomes prediction challenging. Several predictive and prognostic models are used but have considerable inaccuracy at individual level. We tried to increase prediction accuracy using a multi-omics strategy. We interrogated data from 1391 consecutive, newly diagnosed subjects with AML, integrating information on mutation topography, DNA methylation, and transcriptomics. We developed an unsupervised multi-omics classification system (UAMOCS) with these data. UAMOCS provides a multidimensional understanding of AML heterogeneity and stratifies subjects into three cohorts: (a) UAMOCS1 [high lymphocyte activating 3 (LAG3) expression, chromosome instability, myelodysplasia-related mutations]; (b) UAMOCS2 (monocytic-like profile, immune suppression and activated angiogenesis and hypoxia pathways); and (c) UAMOCS3 [CCAAT enhancer binding protein alpha (CEBPA) mutations and MYC pathway activation]. UAMOCS distinguishes overall survival rates across the cohorts (TCGA P = 0.042; GSE71014 P = 0.043; ihCAMs-AML, GSE102691 and GSE37642 all P < 0.001). The model's C-statistic is comparable to the 2022 ELN risk classification (0.87 vs 0.82; P = 0.162), but offers a more nuanced distinction between intermediate- and high-risk groups. When combined with high-throughput drug sensitivity testing, UAMOCS can accurately predict sensitivity to azacitidine (AZA) and venetoclax. The UAMOCS system is available as an R package. The UAMOCS system has the potential to redefine AML subtypes, enhance prognostic predictions, and guide treatment strategies based on patients' immune status and expected responses to therapies.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"1836-1854"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12161470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myeloid leukemia (AML) is a heterogeneous cancer, making outcomes prediction challenging. Several predictive and prognostic models are used but have considerable inaccuracy at individual level. We tried to increase prediction accuracy using a multi-omics strategy. We interrogated data from 1391 consecutive, newly diagnosed subjects with AML, integrating information on mutation topography, DNA methylation, and transcriptomics. We developed an unsupervised multi-omics classification system (UAMOCS) with these data. UAMOCS provides a multidimensional understanding of AML heterogeneity and stratifies subjects into three cohorts: (a) UAMOCS1 [high lymphocyte activating 3 (LAG3) expression, chromosome instability, myelodysplasia-related mutations]; (b) UAMOCS2 (monocytic-like profile, immune suppression and activated angiogenesis and hypoxia pathways); and (c) UAMOCS3 [CCAAT enhancer binding protein alpha (CEBPA) mutations and MYC pathway activation]. UAMOCS distinguishes overall survival rates across the cohorts (TCGA P = 0.042; GSE71014 P = 0.043; ihCAMs-AML, GSE102691 and GSE37642 all P < 0.001). The model's C-statistic is comparable to the 2022 ELN risk classification (0.87 vs 0.82; P = 0.162), but offers a more nuanced distinction between intermediate- and high-risk groups. When combined with high-throughput drug sensitivity testing, UAMOCS can accurately predict sensitivity to azacitidine (AZA) and venetoclax. The UAMOCS system is available as an R package. The UAMOCS system has the potential to redefine AML subtypes, enhance prognostic predictions, and guide treatment strategies based on patients' immune status and expected responses to therapies.

基于多组学的急性髓系白血病分类及预后预测价值。
急性髓性白血病(AML)是一种异质性癌症,使得预后预测具有挑战性。使用了几种预测和预后模型,但在个体水平上有相当大的不准确性。我们尝试使用多组学策略来提高预测的准确性。我们查询了1391名连续的新诊断的AML患者的数据,整合了突变地形、DNA甲基化和转录组学的信息。我们利用这些数据开发了一个无监督多组学分类系统(UAMOCS)。UAMOCS提供了对AML异质性的多维理解,并将受试者分为三个队列:(a) UAMOCS1[高淋巴细胞激活3 (LAG3)表达,染色体不稳定性,骨髓增生异常相关突变];(b) UAMOCS2(单核细胞样谱,免疫抑制和激活血管生成和缺氧途径);(c) UAMOCS3 [CCAAT增强子结合蛋白α (CEBPA)突变和MYC通路激活]。UAMOCS区分了各队列的总生存率(TCGA P = 0.042;Gse71014 p = 0.043;ihcam - aml, GSE102691和GSE37642均为P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信