A semi-supervised domain adaptation method with scale-aware and global-local fusion for abdominal multi-organ segmentation.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kexin Han, Qiong Lou, Fang Lu
{"title":"A semi-supervised domain adaptation method with scale-aware and global-local fusion for abdominal multi-organ segmentation.","authors":"Kexin Han, Qiong Lou, Fang Lu","doi":"10.1002/acm2.70008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Abdominal multi-organ segmentation remains a challenging task. Semi-supervised domain adaptation (SSDA) has emerged as an innovative solution. However, SSDA frameworks based on UNet struggle to capture multi-scale and global information.</p><p><strong>Purpose: </strong>Our work aimed to propose a novel SSDA method to achieve more accurate abdominal multi-organ segmentation with limited labeled target domain data, which has a superior ability to capture the multi-scale features and integrate local and global information effectively.</p><p><strong>Methods: </strong>The proposed network is based on UNet. In the encoder part, a scale-aware with domain-specific batch normalization (SAD) module is integrated to adaptively extract multi-scale features and to get better generalization across source and target domains. In the bottleneck part, a global-local fusion (GLF) module is utilized for capturing and integrating both local and global information. They are integrated into the framework of self-ensembling mean-teacher (SE-MT) to enhance the model's capability to learn common features across source and target domains.</p><p><strong>Results: </strong>To validate the performance of the proposed model, we evaluated it on the public CHAOS and BTCV datasets. For CHAOS, the proposed method obtains an average DSC of 88.97% and ASD of 1.12 mm with only 20% labeled target data. For BTCV, it achieves an average DSC of 88.95% and ASD of 1.13 mm with 20% labeled target data. Compared with the state-of-the-art methods, DSC and ASD increased by at least 0.72% and 0.33 mm on CHAOS, 1.29% and 0.06 mm on BTCV, respectively. Ablation studies were also conducted to verify the contribution of each component of the model. The proposed method achieves a DSC improvement of 3.17% over the baseline with 20% labeled target data.</p><p><strong>Conclusion: </strong>The proposed SSDA method for abdominal multi-organ segmentation has a powerful ability to extract multi-scale and more global features, significantly improving segmentation accuracy and robustness.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e70008"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.70008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Abdominal multi-organ segmentation remains a challenging task. Semi-supervised domain adaptation (SSDA) has emerged as an innovative solution. However, SSDA frameworks based on UNet struggle to capture multi-scale and global information.

Purpose: Our work aimed to propose a novel SSDA method to achieve more accurate abdominal multi-organ segmentation with limited labeled target domain data, which has a superior ability to capture the multi-scale features and integrate local and global information effectively.

Methods: The proposed network is based on UNet. In the encoder part, a scale-aware with domain-specific batch normalization (SAD) module is integrated to adaptively extract multi-scale features and to get better generalization across source and target domains. In the bottleneck part, a global-local fusion (GLF) module is utilized for capturing and integrating both local and global information. They are integrated into the framework of self-ensembling mean-teacher (SE-MT) to enhance the model's capability to learn common features across source and target domains.

Results: To validate the performance of the proposed model, we evaluated it on the public CHAOS and BTCV datasets. For CHAOS, the proposed method obtains an average DSC of 88.97% and ASD of 1.12 mm with only 20% labeled target data. For BTCV, it achieves an average DSC of 88.95% and ASD of 1.13 mm with 20% labeled target data. Compared with the state-of-the-art methods, DSC and ASD increased by at least 0.72% and 0.33 mm on CHAOS, 1.29% and 0.06 mm on BTCV, respectively. Ablation studies were also conducted to verify the contribution of each component of the model. The proposed method achieves a DSC improvement of 3.17% over the baseline with 20% labeled target data.

Conclusion: The proposed SSDA method for abdominal multi-organ segmentation has a powerful ability to extract multi-scale and more global features, significantly improving segmentation accuracy and robustness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信