PDCD10/CCM3, a potential target for pancreatic ductal adenocarcinoma?

IF 6.7 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Hendrik Ungefroren
{"title":"PDCD10/CCM3, a potential target for pancreatic ductal adenocarcinoma?","authors":"Hendrik Ungefroren","doi":"10.1042/CS20241916","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant progression of pancreatic ductal adenocarcinoma (PDAC) is driven by transforming growth factor (TGF)-β1 through extensive cross-talk with other signalling pathways. Prompted by the observation that the ubiquitous protein programmed cell death 10 (PDCD10) is more abundantly expressed in PDAC tumour tissue compared with normal pancreas and highly correlated with reduced patient survival, authors examined its function as a modulator of TGF-β signalling in PDAC. Cytotoxicity assays with PDAC-derived tumour cell lines, PaTu8902 (DPC4+/+) and PaTu8988t (DPC4-/-) engineered to homozygously lack PDCD10 showed that PDCD10 renders cells more chemoresistant to anticancer drugs. Moreover, PDCD10 promoted TGF-β1-dependent proliferation by inactivating the retinoblastoma 1 protein (pRb) via a SMAD4-dependent pathway, and TGF-β1-driven EMT by increasing ERK1/2 activation via a non-SMAD4 pathway. Phosphorylation of pRB and ERK by PDCD10 is facilitated by binding of PDCD10 to MST4. Targeting PDCD10 in PDAC patients may represent a promising new strategy to improve TGF-β targeted therapies.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"139 3","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20241916","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Malignant progression of pancreatic ductal adenocarcinoma (PDAC) is driven by transforming growth factor (TGF)-β1 through extensive cross-talk with other signalling pathways. Prompted by the observation that the ubiquitous protein programmed cell death 10 (PDCD10) is more abundantly expressed in PDAC tumour tissue compared with normal pancreas and highly correlated with reduced patient survival, authors examined its function as a modulator of TGF-β signalling in PDAC. Cytotoxicity assays with PDAC-derived tumour cell lines, PaTu8902 (DPC4+/+) and PaTu8988t (DPC4-/-) engineered to homozygously lack PDCD10 showed that PDCD10 renders cells more chemoresistant to anticancer drugs. Moreover, PDCD10 promoted TGF-β1-dependent proliferation by inactivating the retinoblastoma 1 protein (pRb) via a SMAD4-dependent pathway, and TGF-β1-driven EMT by increasing ERK1/2 activation via a non-SMAD4 pathway. Phosphorylation of pRB and ERK by PDCD10 is facilitated by binding of PDCD10 to MST4. Targeting PDCD10 in PDAC patients may represent a promising new strategy to improve TGF-β targeted therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical science
Clinical science 医学-医学:研究与实验
CiteScore
11.40
自引率
0.00%
发文量
189
审稿时长
4-8 weeks
期刊介绍: Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health. Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively: Cardiovascular system Cerebrovascular system Gastrointestinal tract and liver Genomic medicine Infection and immunity Inflammation Oncology Metabolism Endocrinology and nutrition Nephrology Circulation Respiratory system Vascular biology Molecular pathology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信