A tumor-secreted protein utilizes glucagon release to cause host wasting.

IF 13 1区 生物学 Q1 CELL BIOLOGY
Guangming Ding, Yingge Li, Chen Cheng, Kai Tan, Yifei Deng, Huiwen Pang, Zhongyuan Wang, Peixuan Dang, Xing Wu, Elisabeth Rushworth, Yufeng Yuan, Zhiyong Yang, Wei Song
{"title":"A tumor-secreted protein utilizes glucagon release to cause host wasting.","authors":"Guangming Ding, Yingge Li, Chen Cheng, Kai Tan, Yifei Deng, Huiwen Pang, Zhongyuan Wang, Peixuan Dang, Xing Wu, Elisabeth Rushworth, Yufeng Yuan, Zhiyong Yang, Wei Song","doi":"10.1038/s41421-024-00762-0","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor‒host interaction plays a critical role in malignant tumor-induced organ wasting across multiple species. Despite known regulation of regional wasting of individual peripheral organs by tumors, whether and how tumors utilize critical host catabolic hormone(s) to simultaneously induce systemic host wasting, is largely unknown. Using the conserved yki<sup>3SA</sup>-tumor model in Drosophila, we discovered that tumors increase the production of adipokinetic hormone (Akh), a glucagon-like catabolic hormone, to cause systemic host wasting, including muscle dysfunction, lipid loss, hyperglycemia, and ovary atrophy. We next integrated RNAi screening and Gal4-LexA dual expression system to show that yki<sup>3SA</sup>-gut tumors secrete Pvf1 to remotely activate its receptor Pvr in Akh-producing cells (APCs), ultimately promoting Akh production. The underlying molecular mechanisms involved the Pvf1-Pvr axis that triggers Mmp2-dependent ECM remodeling of APCs and enhances innervation from the excitatory cholinergic neurons. Interestingly, we also confirmed the similar mechanisms governing tumor-induced glucagon release and organ wasting in mammals. Blockade of either glucagon or PDGFR (homolog of Pvr) action efficiently ameliorated organ wasting in the presence of malignant tumors. Therefore, our results demonstrate that tumors remotely promote neural-associated Akh/glucagon production via Pvf1-Pvr axis to cause systemic host wasting.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"11"},"PeriodicalIF":13.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00762-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor‒host interaction plays a critical role in malignant tumor-induced organ wasting across multiple species. Despite known regulation of regional wasting of individual peripheral organs by tumors, whether and how tumors utilize critical host catabolic hormone(s) to simultaneously induce systemic host wasting, is largely unknown. Using the conserved yki3SA-tumor model in Drosophila, we discovered that tumors increase the production of adipokinetic hormone (Akh), a glucagon-like catabolic hormone, to cause systemic host wasting, including muscle dysfunction, lipid loss, hyperglycemia, and ovary atrophy. We next integrated RNAi screening and Gal4-LexA dual expression system to show that yki3SA-gut tumors secrete Pvf1 to remotely activate its receptor Pvr in Akh-producing cells (APCs), ultimately promoting Akh production. The underlying molecular mechanisms involved the Pvf1-Pvr axis that triggers Mmp2-dependent ECM remodeling of APCs and enhances innervation from the excitatory cholinergic neurons. Interestingly, we also confirmed the similar mechanisms governing tumor-induced glucagon release and organ wasting in mammals. Blockade of either glucagon or PDGFR (homolog of Pvr) action efficiently ameliorated organ wasting in the presence of malignant tumors. Therefore, our results demonstrate that tumors remotely promote neural-associated Akh/glucagon production via Pvf1-Pvr axis to cause systemic host wasting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信