Revealing Mechanisms of Lithium-Mediated Nitrogen Reduction Reaction from First-Principles Simulations.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Chengyu Zhou, Qing Zhao
{"title":"Revealing Mechanisms of Lithium-Mediated Nitrogen Reduction Reaction from First-Principles Simulations.","authors":"Chengyu Zhou, Qing Zhao","doi":"10.1002/cphc.202401097","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, lithium-mediated nitrogen reduction reaction (Li-NRR) in nonaqueous electrolytes has proven to be an environmentally friendly and feasible route for ammonia electrosynthesis, revealing tremendous economic and social advantages over the industrial Haber-Bosch process which consumes enormous fossil fuels and generates massive carbon dioxide emissions, and direct electrocatalytic nitrogen reduction reaction (NRR) which suffers from sluggish kinetics and poor faradaic efficiencies. However, reaction mechanisms of Li-NRR and the role of solid electrolyte interface (SEI) layer in activating N<sub>2</sub> remain unclear, impeding its further development. Here, using electronic structure theory, we discover a nitridation-coupled reduction mechanism and a nitrogen cycling reduction mechanism on lithium and lithium nitride surfaces, respectively, which are major components of SEI in experimental characterization. Our work reveals divergent pathways in Li-NRR from conventional direct electrocatalytic NRR, highlights the role of surface reconstruction in improving reactivity, and sheds light on further enhancing efficiency of ammonia electrosynthesis.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401097"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401097","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, lithium-mediated nitrogen reduction reaction (Li-NRR) in nonaqueous electrolytes has proven to be an environmentally friendly and feasible route for ammonia electrosynthesis, revealing tremendous economic and social advantages over the industrial Haber-Bosch process which consumes enormous fossil fuels and generates massive carbon dioxide emissions, and direct electrocatalytic nitrogen reduction reaction (NRR) which suffers from sluggish kinetics and poor faradaic efficiencies. However, reaction mechanisms of Li-NRR and the role of solid electrolyte interface (SEI) layer in activating N2 remain unclear, impeding its further development. Here, using electronic structure theory, we discover a nitridation-coupled reduction mechanism and a nitrogen cycling reduction mechanism on lithium and lithium nitride surfaces, respectively, which are major components of SEI in experimental characterization. Our work reveals divergent pathways in Li-NRR from conventional direct electrocatalytic NRR, highlights the role of surface reconstruction in improving reactivity, and sheds light on further enhancing efficiency of ammonia electrosynthesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信