A Strategy of Assessing Gene Copy Number Differentiation Between Populations Using Ultra-Fast De Novo Assembly of Next-Generation Sequencing Data.

IF 5.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tao Shi, Zhiyan Gao, Yue Zhang, Mark D Rausher, Jinming Chen
{"title":"A Strategy of Assessing Gene Copy Number Differentiation Between Populations Using Ultra-Fast De Novo Assembly of Next-Generation Sequencing Data.","authors":"Tao Shi, Zhiyan Gao, Yue Zhang, Mark D Rausher, Jinming Chen","doi":"10.1111/1755-0998.14080","DOIUrl":null,"url":null,"abstract":"<p><p>Gene duplication and loss play pivotal roles in the evolutionary dynamics of genomes, contributing to species phenotypic diversity and adaptation. However, detecting copy number variations (CNVs) in homoploid populations and newly-diverged species using short reads from next-generation sequencing (NGS) with traditional methods can often be challenging due to uneven read coverage caused by variations in GC content and the presence of repetitive sequences. To address these challenges, we developed a novel pipeline, ST4gCNV, which leverages ultra-fast de novo assemblies of NGS data to detect gene-specific CNVs between populations. The pipeline effectively reduces the variance of read coverage due to technical factors such as GC bias, providing a reliable CNV detection with a minimum sequencing depth of 10. We successfully apply ST4gCNV to the resequencing analysis of homoploid species Nelumbo nucifera and Nelumbo lutea (lotus). We reveal significant CNV-driven differentiation between these species, particularly in genes related to petal colour diversity such as those involved in the anthocyanin pathway. By highlighting the extensive gene duplication and loss events in Nelumbo, our study demonstrates the utility of ST4gCNV in population genomics and underscores its potential of integrating genomic CNV analysis with traditional SNP-based resequencing analysis.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14080"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14080","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene duplication and loss play pivotal roles in the evolutionary dynamics of genomes, contributing to species phenotypic diversity and adaptation. However, detecting copy number variations (CNVs) in homoploid populations and newly-diverged species using short reads from next-generation sequencing (NGS) with traditional methods can often be challenging due to uneven read coverage caused by variations in GC content and the presence of repetitive sequences. To address these challenges, we developed a novel pipeline, ST4gCNV, which leverages ultra-fast de novo assemblies of NGS data to detect gene-specific CNVs between populations. The pipeline effectively reduces the variance of read coverage due to technical factors such as GC bias, providing a reliable CNV detection with a minimum sequencing depth of 10. We successfully apply ST4gCNV to the resequencing analysis of homoploid species Nelumbo nucifera and Nelumbo lutea (lotus). We reveal significant CNV-driven differentiation between these species, particularly in genes related to petal colour diversity such as those involved in the anthocyanin pathway. By highlighting the extensive gene duplication and loss events in Nelumbo, our study demonstrates the utility of ST4gCNV in population genomics and underscores its potential of integrating genomic CNV analysis with traditional SNP-based resequencing analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Ecology Resources
Molecular Ecology Resources 生物-进化生物学
CiteScore
15.60
自引率
5.20%
发文量
170
审稿时长
3 months
期刊介绍: Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines. In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信