Andrew R Mack, Andrea M Hujer, Maria F Mojica, Magdalena A Taracila, Michael Feldgarden, Daniel H Haft, William Klimke, Arjun B Prasad, Robert A Bonomo
{"title":"β-Lactamase diversity in <i>Pseudomonas aeruginosa</i>.","authors":"Andrew R Mack, Andrea M Hujer, Maria F Mojica, Magdalena A Taracila, Michael Feldgarden, Daniel H Haft, William Klimke, Arjun B Prasad, Robert A Bonomo","doi":"10.1128/aac.00785-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> is a clinically important Gram-negative pathogen responsible for a wide variety of serious nosocomial and community-acquired infections. Antibiotic resistance is a major concern, as this organism has a wide variety of resistance mechanisms, including chromosomal class C (<i>bla</i><sub>PDC</sub>) and D (<i>bla</i><sub>OXA-50</sub> family) β-lactamases, efflux pumps, porin channels, and the ability to readily acquire additional β-lactamases. Surveillance studies can reveal the diversity and distribution of β-lactamase alleles but are difficult and expensive to conduct. Herein, we apply a novel approach, using publicly available data derived from whole genome sequences, to explore the diversity and distribution of β-lactamase alleles across 30,452 <i>P</i>. <i>aeruginosa</i> isolates. The most common alleles were <i>bla</i><sub>PDC-3</sub>, <i>bla</i><sub>PDC-5</sub>, <i>bla</i><sub>PDC-8</sub>, <i>bla</i><sub>OXA-488</sub>, <i>bla</i><sub>OXA-50</sub>, and <i>bla</i><sub>OXA-486</sub>. Interestingly, only 43.6% of assigned <i>bla</i><sub>PDC</sub> alleles were encountered, and the 10 most common <i>bla</i><sub>PDC</sub> and intrinsic <i>bla</i><sub>OXA</sub> alleles represent approximately 75% of their respective total alleles, while many other assigned alleles were extremely uncommon. As anticipated, differences were observed over time and geography. Surprisingly, more distinct unassigned alleles were encountered than distinct assigned alleles. Understanding the diversity and distribution of β-lactamase alleles helps to prioritize variants for further research, select targets for drug development, and may aid in selecting therapies for a given infection.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0078524"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881563/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00785-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas aeruginosa is a clinically important Gram-negative pathogen responsible for a wide variety of serious nosocomial and community-acquired infections. Antibiotic resistance is a major concern, as this organism has a wide variety of resistance mechanisms, including chromosomal class C (blaPDC) and D (blaOXA-50 family) β-lactamases, efflux pumps, porin channels, and the ability to readily acquire additional β-lactamases. Surveillance studies can reveal the diversity and distribution of β-lactamase alleles but are difficult and expensive to conduct. Herein, we apply a novel approach, using publicly available data derived from whole genome sequences, to explore the diversity and distribution of β-lactamase alleles across 30,452 P. aeruginosa isolates. The most common alleles were blaPDC-3, blaPDC-5, blaPDC-8, blaOXA-488, blaOXA-50, and blaOXA-486. Interestingly, only 43.6% of assigned blaPDC alleles were encountered, and the 10 most common blaPDC and intrinsic blaOXA alleles represent approximately 75% of their respective total alleles, while many other assigned alleles were extremely uncommon. As anticipated, differences were observed over time and geography. Surprisingly, more distinct unassigned alleles were encountered than distinct assigned alleles. Understanding the diversity and distribution of β-lactamase alleles helps to prioritize variants for further research, select targets for drug development, and may aid in selecting therapies for a given infection.
期刊介绍:
Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.