Metabolic Activation of Stiripentol Correlates with Cytotoxicity.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Chemical Research in Toxicology Pub Date : 2025-03-17 Epub Date: 2025-02-09 DOI:10.1021/acs.chemrestox.4c00209
Ziying Jiang, Yang Wang, Guode Zhao, Xinyu Luo, Yan Shen, Weiwei Li, Ying Peng, Jiang Zheng
{"title":"Metabolic Activation of Stiripentol Correlates with Cytotoxicity.","authors":"Ziying Jiang, Yang Wang, Guode Zhao, Xinyu Luo, Yan Shen, Weiwei Li, Ying Peng, Jiang Zheng","doi":"10.1021/acs.chemrestox.4c00209","DOIUrl":null,"url":null,"abstract":"<p><p>Stiripentol (SRP) is an antiepileptic agent utilized in managing seizures related to Dravet syndrome. Long-term safety studies have highlighted significant adverse effects in patients including drowsiness, reduced appetite, ataxia, and elevated levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The present study aimed at identifying the reactive metabolite of SRP and defining the potential correlation between its cytotoxicity and metabolic activation. Rat liver microsome incubation of SRP fortified with GSH as a trapping agent produced an <i>α</i>,β-unsaturated ketone metabolite (M1) and a related GSH conjugate (M2). Moreover, both the phase I metabolite and the GSH conjugate were detected in the bile of SRP-treated rats, indicating that both in vivo and in vitro metabolic activation of SRP took place. Notably, SRP exhibited significant cytotoxicity toward rat primary hepatocytes. Pretreatment with ketoconazole, a selective CYP3A enzyme inhibitor, mitigated the susceptibility of hepatocytes to SRP-induced cytotoxicity. These findings suggest that SRP may undergo metabolism to the α,β-unsaturated ketone metabolite, potentially contributing to the cytotoxic effects associated with SRP.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"369-379"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00209","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stiripentol (SRP) is an antiepileptic agent utilized in managing seizures related to Dravet syndrome. Long-term safety studies have highlighted significant adverse effects in patients including drowsiness, reduced appetite, ataxia, and elevated levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The present study aimed at identifying the reactive metabolite of SRP and defining the potential correlation between its cytotoxicity and metabolic activation. Rat liver microsome incubation of SRP fortified with GSH as a trapping agent produced an α,β-unsaturated ketone metabolite (M1) and a related GSH conjugate (M2). Moreover, both the phase I metabolite and the GSH conjugate were detected in the bile of SRP-treated rats, indicating that both in vivo and in vitro metabolic activation of SRP took place. Notably, SRP exhibited significant cytotoxicity toward rat primary hepatocytes. Pretreatment with ketoconazole, a selective CYP3A enzyme inhibitor, mitigated the susceptibility of hepatocytes to SRP-induced cytotoxicity. These findings suggest that SRP may undergo metabolism to the α,β-unsaturated ketone metabolite, potentially contributing to the cytotoxic effects associated with SRP.

斯立普利醇的代谢激活与细胞毒性相关。
斯立戊醇(SRP)是一种抗癫痫药,用于治疗与德拉韦综合征相关的癫痫发作。长期安全性研究强调了患者的显著不良反应,包括嗜睡、食欲减退、共济失调和血清谷丙转氨酶(ALT)和天冬氨酸转氨酶(AST)水平升高。本研究旨在鉴定SRP的活性代谢物,并确定其细胞毒性与代谢激活之间的潜在相关性。以谷胱甘肽为诱捕剂的SRP对大鼠肝微粒体孵育产生α,β-不饱和酮代谢物(M1)和相关的谷胱甘肽偶联物(M2)。此外,在SRP处理大鼠的胆汁中检测到I期代谢物和GSH偶联物,表明SRP在体内和体外都发生了代谢激活。值得注意的是,SRP对大鼠原代肝细胞有明显的细胞毒性。酮康唑(一种选择性CYP3A酶抑制剂)预处理可以减轻肝细胞对srp诱导的细胞毒性的敏感性。这些发现表明,SRP可能会代谢成α,β-不饱和酮代谢物,这可能与SRP相关的细胞毒性作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.30%
发文量
215
审稿时长
3.5 months
期刊介绍: Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信