Using natural language processing to analyse text data in behavioural science

IF 21.8 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Stefan Feuerriegel, Abdurahman Maarouf, Dominik Bär, Dominique Geissler, Jonas Schweisthal, Nicolas Pröllochs, Claire E. Robertson, Steve Rathje, Jochen Hartmann, Saif M. Mohammad, Oded Netzer, Alexandra A. Siegel, Barbara Plank, Jay J. Van Bavel
{"title":"Using natural language processing to analyse text data in behavioural science","authors":"Stefan Feuerriegel, Abdurahman Maarouf, Dominik Bär, Dominique Geissler, Jonas Schweisthal, Nicolas Pröllochs, Claire E. Robertson, Steve Rathje, Jochen Hartmann, Saif M. Mohammad, Oded Netzer, Alexandra A. Siegel, Barbara Plank, Jay J. Van Bavel","doi":"10.1038/s44159-024-00392-z","DOIUrl":null,"url":null,"abstract":"Language is a uniquely human trait at the core of human interactions. The language people use often reflects their personality, intentions and state of mind. With the integration of the Internet and social media into everyday life, much of human communication is documented as written text. These online forms of communication (for example, blogs, reviews, social media posts and emails) provide a window into human behaviour and therefore present abundant research opportunities for behavioural science. In this Review, we describe how natural language processing (NLP) can be used to analyse text data in behavioural science. First, we review applications of text data in behavioural science. Second, we describe the NLP pipeline and explain the underlying modelling approaches (for example, dictionary-based approaches and large language models). We discuss the advantages and disadvantages of these methods for behavioural science, in particular with respect to the trade-off between interpretability and accuracy. Finally, we provide actionable recommendations for using NLP to ensure rigour and reproducibility. Natural language processing (NLP) methods are growing in popularity as they become cheaper to implement and easier to use. In this Review, Feuerriegel et al. describe NLP methods and provide recommendations for the use of NLP in behavioural science.","PeriodicalId":74249,"journal":{"name":"Nature reviews psychology","volume":"4 2","pages":"96-111"},"PeriodicalIF":21.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews psychology","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44159-024-00392-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Language is a uniquely human trait at the core of human interactions. The language people use often reflects their personality, intentions and state of mind. With the integration of the Internet and social media into everyday life, much of human communication is documented as written text. These online forms of communication (for example, blogs, reviews, social media posts and emails) provide a window into human behaviour and therefore present abundant research opportunities for behavioural science. In this Review, we describe how natural language processing (NLP) can be used to analyse text data in behavioural science. First, we review applications of text data in behavioural science. Second, we describe the NLP pipeline and explain the underlying modelling approaches (for example, dictionary-based approaches and large language models). We discuss the advantages and disadvantages of these methods for behavioural science, in particular with respect to the trade-off between interpretability and accuracy. Finally, we provide actionable recommendations for using NLP to ensure rigour and reproducibility. Natural language processing (NLP) methods are growing in popularity as they become cheaper to implement and easier to use. In this Review, Feuerriegel et al. describe NLP methods and provide recommendations for the use of NLP in behavioural science.

Abstract Image

使用自然语言处理分析行为科学中的文本数据
语言是一种独特的人类特征,是人类互动的核心。人们使用的语言往往反映了他们的个性、意图和精神状态。随着互联网和社交媒体融入日常生活,许多人类交流都以书面文本的形式记录下来。这些在线交流形式(例如,博客、评论、社交媒体帖子和电子邮件)提供了一个了解人类行为的窗口,因此为行为科学提供了大量的研究机会。在这篇综述中,我们描述了如何使用自然语言处理(NLP)来分析行为科学中的文本数据。首先,回顾了文本数据在行为科学中的应用。其次,我们描述了NLP管道并解释了底层建模方法(例如,基于字典的方法和大型语言模型)。我们讨论了这些行为科学方法的优点和缺点,特别是关于可解释性和准确性之间的权衡。最后,我们为使用NLP提供了可操作的建议,以确保严谨性和可重复性。自然语言处理(NLP)方法越来越受欢迎,因为它们变得更便宜,更容易实现和使用。在这篇综述中,Feuerriegel等人描述了NLP方法,并为在行为科学中使用NLP提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信