{"title":"Chaos and attraction domain of fractional \nΦ6-van der Pol with time delay velocity","authors":"Zhikuan Xie, Jiaquan Xie, Wei Shi, Yuanming Liu, Jialin Si, Jiani Ren","doi":"10.1002/mma.10545","DOIUrl":null,"url":null,"abstract":"<p>This article investigates the chaotic analysis and attractive domain of a fractional-order \n<span></span><math>\n <msup>\n <mo>Φ</mo>\n <mn>6</mn>\n </msup></math>-van der Pol with time delay velocity under harmonic excitation. Firstly, eight different types of bifurcation states of the system under different parameters are calculated by using the undisturbed system. Secondly, the Melnikov method is used to explore the effect of time delay velocity on the threshold of chaos in the Smale horseshoe sense under the double-well potential and three-well potential of the system. Finally, through numerical analysis of the phase diagram, bifurcation diagram, and maximum Lyapunov exponent, the influence of time delay velocity on system chaos is studied. The results indicate that an increase in the delay velocity coefficient will lead to the system transitioning from a chaotic state to a periodic state, while an increase in the delay velocity term will lead to the system transitioning from a periodic state to a chaotic state. In the study of system bifurcation, it is found that the position of the equilibrium points of the system changes during periodic motion. Therefore, cell mapping is used to draw the attractive domain of the system is studying the influence of initial conditions on the equilibrium point of the system and the results show that there is a close relationship between the attraction domain and the process of chaos occurrence.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"4262-4278"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10545","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the chaotic analysis and attractive domain of a fractional-order
-van der Pol with time delay velocity under harmonic excitation. Firstly, eight different types of bifurcation states of the system under different parameters are calculated by using the undisturbed system. Secondly, the Melnikov method is used to explore the effect of time delay velocity on the threshold of chaos in the Smale horseshoe sense under the double-well potential and three-well potential of the system. Finally, through numerical analysis of the phase diagram, bifurcation diagram, and maximum Lyapunov exponent, the influence of time delay velocity on system chaos is studied. The results indicate that an increase in the delay velocity coefficient will lead to the system transitioning from a chaotic state to a periodic state, while an increase in the delay velocity term will lead to the system transitioning from a periodic state to a chaotic state. In the study of system bifurcation, it is found that the position of the equilibrium points of the system changes during periodic motion. Therefore, cell mapping is used to draw the attractive domain of the system is studying the influence of initial conditions on the equilibrium point of the system and the results show that there is a close relationship between the attraction domain and the process of chaos occurrence.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.