Whole-body vibration protects against chronic high-altitude hypoxic bone loss by regulating the nitric oxide/HIF-1α axis in osteoblasts

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dan Wang, Ruobing Liu, Yuanjun Ding, Qilin Pei, Tao Sun, Xi Shao, Maogang Jiang, Juan Liu, Jinghui Huang, Zedong Yan, Xiaoxia Hao, Da Jing, Jing Cai
{"title":"Whole-body vibration protects against chronic high-altitude hypoxic bone loss by regulating the nitric oxide/HIF-1α axis in osteoblasts","authors":"Dan Wang,&nbsp;Ruobing Liu,&nbsp;Yuanjun Ding,&nbsp;Qilin Pei,&nbsp;Tao Sun,&nbsp;Xi Shao,&nbsp;Maogang Jiang,&nbsp;Juan Liu,&nbsp;Jinghui Huang,&nbsp;Zedong Yan,&nbsp;Xiaoxia Hao,&nbsp;Da Jing,&nbsp;Jing Cai","doi":"10.1096/fj.202402629R","DOIUrl":null,"url":null,"abstract":"<p>The hypobaric hypoxia environment found at high altitudes imposes various reversible and irreversible detrimental effects on living organisms. Accumulating evidence suggests that hypobaric hypoxia negatively impacts skeleton health by diminishing bone quality and disrupting bone microarchitecture. However, therapeutic strategies to counteract this bone loss remain limited. This study investigates the impact of whole-body vibration (WBV) stimulation on skeletal health of rats continuously exposed to simulated hypobaric hypoxia environment at an altitude of 4500 m for 6 weeks. We found that WBV stimulation at 30 Hz and 0.3 g significantly improved femoral bone mass, microarchitecture, and biomechanical properties in rats exposed to chronic hypobaric hypoxia. Additionally, in vitro studies demonstrated that WBV enhanced osteogenic potential and activity in primary osteoblasts under hypoxia conditions. It also reduced levels of hypoxia-inducible factor 1α (HIF-1α), a key transcription factor involved in cellular response to hypoxia. Conversely, overexpression of HIF-1α significantly inhibited cellular differentiation and osteogenesis in osteoblasts exposed to WBV stimulation under hypoxic conditions. Furthermore, WBV stimulation led to a significant increase in nitric oxide (NO) concentrations in osteoblasts during hypoxic exposure. In vitro experiments showed that blocking of NO synthesis with L-NAME impeded WBV-stimulated osteogenic activity in hypoxia-exposed osteoblasts. In vivo studies demonstrated that inhibiting NO synthesis similarly abolished the positive impact of WBV on bone microarchitecture and biomechanical properties under hypobaric hypoxia. Collectivity, our findings indicate that WBV protects against hypobaric hypoxia-induced bone loss by regulating the NO/HIF-1α axis in osteoblasts, and reveal its clinical potential as a promising non-invasive approach.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402629R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hypobaric hypoxia environment found at high altitudes imposes various reversible and irreversible detrimental effects on living organisms. Accumulating evidence suggests that hypobaric hypoxia negatively impacts skeleton health by diminishing bone quality and disrupting bone microarchitecture. However, therapeutic strategies to counteract this bone loss remain limited. This study investigates the impact of whole-body vibration (WBV) stimulation on skeletal health of rats continuously exposed to simulated hypobaric hypoxia environment at an altitude of 4500 m for 6 weeks. We found that WBV stimulation at 30 Hz and 0.3 g significantly improved femoral bone mass, microarchitecture, and biomechanical properties in rats exposed to chronic hypobaric hypoxia. Additionally, in vitro studies demonstrated that WBV enhanced osteogenic potential and activity in primary osteoblasts under hypoxia conditions. It also reduced levels of hypoxia-inducible factor 1α (HIF-1α), a key transcription factor involved in cellular response to hypoxia. Conversely, overexpression of HIF-1α significantly inhibited cellular differentiation and osteogenesis in osteoblasts exposed to WBV stimulation under hypoxic conditions. Furthermore, WBV stimulation led to a significant increase in nitric oxide (NO) concentrations in osteoblasts during hypoxic exposure. In vitro experiments showed that blocking of NO synthesis with L-NAME impeded WBV-stimulated osteogenic activity in hypoxia-exposed osteoblasts. In vivo studies demonstrated that inhibiting NO synthesis similarly abolished the positive impact of WBV on bone microarchitecture and biomechanical properties under hypobaric hypoxia. Collectivity, our findings indicate that WBV protects against hypobaric hypoxia-induced bone loss by regulating the NO/HIF-1α axis in osteoblasts, and reveal its clinical potential as a promising non-invasive approach.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信