Diverse general solitary wave solutions and conserved currents of a generalized geophysical Korteweg–de Vries model with nonlinear power law in ocean science
{"title":"Diverse general solitary wave solutions and conserved currents of a generalized geophysical Korteweg–de Vries model with nonlinear power law in ocean science","authors":"Oke Davies Adeyemo","doi":"10.1002/mma.10591","DOIUrl":null,"url":null,"abstract":"<p>This article presents an analytical investigation performed on a generalized geophysical Korteweg–de Vries model with nonlinear power law in ocean science. To start with, achieving diverse solitary wave solutions to the generalized power-law model involves using wave transformation, which reduces the model to a nonlinear ordinary differential equation. A direct integration approach is adopted to construct solutions in the beginning. This brings the emergence of interesting solutions like non-topological solitons, trigonometric functions, exponential functions, elliptic functions, and Weierstrass functions in general structures. Besides, in a bid to secure more general exact solutions to the model, one adopts the extended Jacobi elliptic function expansion technique (for some specific cases of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>). Thus, various cnoidal, snoidal, and dnoidal wave solutions to the understudied model are attained. The copolar trio explicated in a tabular form reveals that these solutions can be relapsed to various hyperbolic and trigonometric functions under certain criteria. Additionally, diverse graphical exhibitions of the dynamical attributes of the gained results are presented in a bid to have a sound understanding of the physical phenomena of the underlying model. Later, one gives the conserved vectors of the aforementioned equation by employing the standard multiplier approach.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"5039-5063"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.10591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10591","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an analytical investigation performed on a generalized geophysical Korteweg–de Vries model with nonlinear power law in ocean science. To start with, achieving diverse solitary wave solutions to the generalized power-law model involves using wave transformation, which reduces the model to a nonlinear ordinary differential equation. A direct integration approach is adopted to construct solutions in the beginning. This brings the emergence of interesting solutions like non-topological solitons, trigonometric functions, exponential functions, elliptic functions, and Weierstrass functions in general structures. Besides, in a bid to secure more general exact solutions to the model, one adopts the extended Jacobi elliptic function expansion technique (for some specific cases of
). Thus, various cnoidal, snoidal, and dnoidal wave solutions to the understudied model are attained. The copolar trio explicated in a tabular form reveals that these solutions can be relapsed to various hyperbolic and trigonometric functions under certain criteria. Additionally, diverse graphical exhibitions of the dynamical attributes of the gained results are presented in a bid to have a sound understanding of the physical phenomena of the underlying model. Later, one gives the conserved vectors of the aforementioned equation by employing the standard multiplier approach.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.