Chenhui Yin, Marco Cecotti, Daniel J. Auger, Abbas Fotouhi, Haobin Jiang
{"title":"Deep-learning-based vehicle trajectory prediction: A review","authors":"Chenhui Yin, Marco Cecotti, Daniel J. Auger, Abbas Fotouhi, Haobin Jiang","doi":"10.1049/itr2.70001","DOIUrl":null,"url":null,"abstract":"<p>Vehicle trajectory prediction enables autonomous vehicles to better reason about fast-changing driving scenarios and thus perform well-informed decision-making tasks. Among different prediction approaches, deep learning-based (DL-based) methodologies stand out because of their capabilities to efficiently summarise historical data, infer nonlinear behavioural patterns from human driving data, and perform long-horizon prediction. This work reviews the DL-based methods that have shown promising results, organising them in terms of usage of the input data, separating the encodings of the target vehicle's historical data, surrounding vehicle's historical data, and road layout data. In particular, this paper explores the relationships between the scope of the prediction components and the input data formats, as well as the connections with other elements in the same prediction framework, including vehicle interaction and road scene mining. This information is crucial to understand complex architectural decisions and to provide guidance for the design of improved solutions. This work also compares the performance of the most successful prediction models, establishing that appropriate encodings of vehicle interactions and road scenes improve trajectory prediction accuracy, with the best performance achieved by attention mechanism and Transformer-based models. Finally, this work discusses future research directions, including considerations for real-time applications.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.70001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle trajectory prediction enables autonomous vehicles to better reason about fast-changing driving scenarios and thus perform well-informed decision-making tasks. Among different prediction approaches, deep learning-based (DL-based) methodologies stand out because of their capabilities to efficiently summarise historical data, infer nonlinear behavioural patterns from human driving data, and perform long-horizon prediction. This work reviews the DL-based methods that have shown promising results, organising them in terms of usage of the input data, separating the encodings of the target vehicle's historical data, surrounding vehicle's historical data, and road layout data. In particular, this paper explores the relationships between the scope of the prediction components and the input data formats, as well as the connections with other elements in the same prediction framework, including vehicle interaction and road scene mining. This information is crucial to understand complex architectural decisions and to provide guidance for the design of improved solutions. This work also compares the performance of the most successful prediction models, establishing that appropriate encodings of vehicle interactions and road scenes improve trajectory prediction accuracy, with the best performance achieved by attention mechanism and Transformer-based models. Finally, this work discusses future research directions, including considerations for real-time applications.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf