{"title":"Improved stability results for neural networks of neutral type with additive time-varying delays and Markovian jumping parameters","authors":"R. Sugumar, R. Agalya, D. Ajay","doi":"10.1002/mma.10597","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates stability problem for neural networks of neutral type with additive time-varying delays and Markovian jump parameters. By constructing an improved Lyapunov-Krasovskii functional with triple and four integral terms and applying the free matrix variables in approximating certain integral quadratic terms, applying the free matrix variables in approximating certain integral quadratic terms, we derived the stability condition in terms of linear matrix inequalities (LMIs). Two numerical examples are provided to show the effectiveness of the proposed method. The obtained results are compared with the existing results to show the conservativeness.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"5187-5201"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10597","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates stability problem for neural networks of neutral type with additive time-varying delays and Markovian jump parameters. By constructing an improved Lyapunov-Krasovskii functional with triple and four integral terms and applying the free matrix variables in approximating certain integral quadratic terms, applying the free matrix variables in approximating certain integral quadratic terms, we derived the stability condition in terms of linear matrix inequalities (LMIs). Two numerical examples are provided to show the effectiveness of the proposed method. The obtained results are compared with the existing results to show the conservativeness.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.