Direct Current Stimulation (DCS) Modulates Lipid Metabolism and Intercellular Vesicular Trafficking in SHSY-5Y Cell Line: Implications for Parkinson's Disease

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Marco Piccoli, Luisa Barbato, Natale Vincenzo Maiorana, Alessandra Mingione, Francesca Raimondo, Marco Ghirimoldi, Federica Cirillo, Mattia Schiepati, Domenico Salerno, Luigi Anastasia, Elisabetta Albi, Marcello Manfredi, Tommaso Bocci, Alberto Priori, Paola Signorelli
{"title":"Direct Current Stimulation (DCS) Modulates Lipid Metabolism and Intercellular Vesicular Trafficking in SHSY-5Y Cell Line: Implications for Parkinson's Disease","authors":"Marco Piccoli,&nbsp;Luisa Barbato,&nbsp;Natale Vincenzo Maiorana,&nbsp;Alessandra Mingione,&nbsp;Francesca Raimondo,&nbsp;Marco Ghirimoldi,&nbsp;Federica Cirillo,&nbsp;Mattia Schiepati,&nbsp;Domenico Salerno,&nbsp;Luigi Anastasia,&nbsp;Elisabetta Albi,&nbsp;Marcello Manfredi,&nbsp;Tommaso Bocci,&nbsp;Alberto Priori,&nbsp;Paola Signorelli","doi":"10.1111/jnc.70014","DOIUrl":null,"url":null,"abstract":"<p>The modulation of the brain's electrical activity for therapeutic purposes has recently gained attention, supported by the promising results obtained through the non-invasive application of transcranial direct current stimulation (tDCS) in the treatment of neurodegenerative and neurological diseases. To optimize therapeutic efficacy, it is crucial to investigate the cellular and molecular effects of tDCS. This will help to identify important biomarkers, predict patient's response and develop personalized treatments. In this study, we applied direct current stimulation (DCS) to a neural cell line, using mild currents over short periods of time (0.5 mA, 20 min), with 24-h intervals. We observed that DCS induced changes in the cellular lipidome, with transient effects observed after a single stimulation (lasting 24 h) and more significant, long-lasting effects (up to 72 h) after repeated stimulation cycles. In neural cells, multiple DCS treatment modulated structural membrane lipids (PE, PS, PI), downregulated glycerol lipids with ether-linked fatty acids and pro-inflammatory lipids (ceramides and lyso-glycerophospholipids) (<i>p</i> ≤ 0.005). Multiple DCS sessions altered transcriptional activity by decreasing the expression of inflammatory cytokines (TNF-α, <i>p</i> ≤ 0.05; IL-1β, <i>p</i> ≤ 0.01), while increasing the expression of neuroprotective factors such as heme oxygenase-1 (<i>p</i> ≤ 0.0001) and brain-derived neurotrophic factor (<i>p</i> ≤ 0.05), as well as proteins involved in vesicular transport (SNARE, sorting nexins and seipin and α-synuclein; <i>p</i> ≤ 0.05). In addition, DCS enhanced the release of extracellular vesicles, with repeated stimulations significantly increasing the release of exosomes threefold. In conclusion, while a single electrical stimulation induces transient metabolic changes with limited phenotypic effects, repeated applications induce a broader and deeper modulation of lipid species. This may lead to a neuroprotective and neuroplasticity-focussed transcriptional profile, potentially supporting the therapeutic effects of tDCS at the cellular and molecular level in patients..\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation of the brain's electrical activity for therapeutic purposes has recently gained attention, supported by the promising results obtained through the non-invasive application of transcranial direct current stimulation (tDCS) in the treatment of neurodegenerative and neurological diseases. To optimize therapeutic efficacy, it is crucial to investigate the cellular and molecular effects of tDCS. This will help to identify important biomarkers, predict patient's response and develop personalized treatments. In this study, we applied direct current stimulation (DCS) to a neural cell line, using mild currents over short periods of time (0.5 mA, 20 min), with 24-h intervals. We observed that DCS induced changes in the cellular lipidome, with transient effects observed after a single stimulation (lasting 24 h) and more significant, long-lasting effects (up to 72 h) after repeated stimulation cycles. In neural cells, multiple DCS treatment modulated structural membrane lipids (PE, PS, PI), downregulated glycerol lipids with ether-linked fatty acids and pro-inflammatory lipids (ceramides and lyso-glycerophospholipids) (p ≤ 0.005). Multiple DCS sessions altered transcriptional activity by decreasing the expression of inflammatory cytokines (TNF-α, p ≤ 0.05; IL-1β, p ≤ 0.01), while increasing the expression of neuroprotective factors such as heme oxygenase-1 (p ≤ 0.0001) and brain-derived neurotrophic factor (p ≤ 0.05), as well as proteins involved in vesicular transport (SNARE, sorting nexins and seipin and α-synuclein; p ≤ 0.05). In addition, DCS enhanced the release of extracellular vesicles, with repeated stimulations significantly increasing the release of exosomes threefold. In conclusion, while a single electrical stimulation induces transient metabolic changes with limited phenotypic effects, repeated applications induce a broader and deeper modulation of lipid species. This may lead to a neuroprotective and neuroplasticity-focussed transcriptional profile, potentially supporting the therapeutic effects of tDCS at the cellular and molecular level in patients..

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信