{"title":"On damping a control system with global aftereffect on quantum graphs: Stochastic interpretation","authors":"Sergey Buterin","doi":"10.1002/mma.10549","DOIUrl":null,"url":null,"abstract":"<p>Quantum graphs model processes in complex systems represented as spatial networks in various fields of natural science and technology. An example is the oscillations of elastic string networks, the nodes of which, besides the continuity conditions, also obey the Kirchhoff conditions, expressing the balance of tensions. In this paper, we propose a new look at quantum graphs as <i>temporal</i> networks, which means that the variable parametrizing the edges of a graph is interpreted as time, while each internal vertex is a branching point giving several different scenarios for the further trajectory of a process. Then Kirchhoff-type conditions may also arise. Namely, they will be satisfied by such a trajectory of the process that is optimal with account of all the scenarios simultaneously. By employing the recent concept of global delay, we extend the problem of damping a first-order control system with aftereffect, considered earlier only on an interval, to an arbitrary tree graph. The first means that the delay, imposed starting from the initial moment of time, associated with the root of the tree, propagates through all internal vertices. Bringing the system into the equilibrium and minimizing the energy functional with account of the anticipated probability of each scenario, we come to a variational problem. Then, we establish its equivalence to a self-adjoint boundary value problem on the tree for some second-order equations involving both the global delay and the global advance. The unique solvability of both problems is proved. We also illustrate that the interval case when the coefficients of the equation are discrete stochastic processes in discrete time can be viewed as the extension to a tree.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"4310-4331"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum graphs model processes in complex systems represented as spatial networks in various fields of natural science and technology. An example is the oscillations of elastic string networks, the nodes of which, besides the continuity conditions, also obey the Kirchhoff conditions, expressing the balance of tensions. In this paper, we propose a new look at quantum graphs as temporal networks, which means that the variable parametrizing the edges of a graph is interpreted as time, while each internal vertex is a branching point giving several different scenarios for the further trajectory of a process. Then Kirchhoff-type conditions may also arise. Namely, they will be satisfied by such a trajectory of the process that is optimal with account of all the scenarios simultaneously. By employing the recent concept of global delay, we extend the problem of damping a first-order control system with aftereffect, considered earlier only on an interval, to an arbitrary tree graph. The first means that the delay, imposed starting from the initial moment of time, associated with the root of the tree, propagates through all internal vertices. Bringing the system into the equilibrium and minimizing the energy functional with account of the anticipated probability of each scenario, we come to a variational problem. Then, we establish its equivalence to a self-adjoint boundary value problem on the tree for some second-order equations involving both the global delay and the global advance. The unique solvability of both problems is proved. We also illustrate that the interval case when the coefficients of the equation are discrete stochastic processes in discrete time can be viewed as the extension to a tree.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.