{"title":"Optical solitons, qualitative analysis, and chaotic behaviors to the highly dispersive nonlinear perturbation Schrödinger equation","authors":"Yu-Fei Chen","doi":"10.1002/mma.10592","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic-power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it cannot be integrated directly, so we build an integrable factor equation for the approximated equation and apply the trial equation method and the complete discrimination system for polynomial method to create new soliton solutions. On the other hand, we use the bifurcation theory to qualitatively analyze the equation and find the model has periodic solutions, bell-shaped soliton solutions, and solitary wave solutions via phase diagrams. The topological stability of the solutions with respect to the parameters is explored in order to better understand the effect of parameters perturbations on the stability of the model's solutions. Furthermore, we analyze the modulation instability and give the corresponding linear criterion. After accounting for external perturbation terms, we analyze the chaotic behaviors of the equation through the largest Lyapunov exponents and phase diagrams.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 4","pages":"5064-5085"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10592","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the highly dispersive nonlinear perturbation Schrödinger equation, which has arbitrary form of Kudryashov's with sextic-power law refractive index and generalized nonlocal laws. For the equation has highly dispersive nonlinear terms and higher order derivatives, it cannot be integrated directly, so we build an integrable factor equation for the approximated equation and apply the trial equation method and the complete discrimination system for polynomial method to create new soliton solutions. On the other hand, we use the bifurcation theory to qualitatively analyze the equation and find the model has periodic solutions, bell-shaped soliton solutions, and solitary wave solutions via phase diagrams. The topological stability of the solutions with respect to the parameters is explored in order to better understand the effect of parameters perturbations on the stability of the model's solutions. Furthermore, we analyze the modulation instability and give the corresponding linear criterion. After accounting for external perturbation terms, we analyze the chaotic behaviors of the equation through the largest Lyapunov exponents and phase diagrams.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.