Exploring the Jau Crater Cluster, Gale Crater, Mars

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
J. A. Grant, M. E. Hoffman, H. E. Newsom posthumously, T. Kubacki, C. Juarez, N. Moore, S. A. Wilson, T. J. Parker
{"title":"Exploring the Jau Crater Cluster, Gale Crater, Mars","authors":"J. A. Grant,&nbsp;M. E. Hoffman,&nbsp;H. E. Newsom posthumously,&nbsp;T. Kubacki,&nbsp;C. Juarez,&nbsp;N. Moore,&nbsp;S. A. Wilson,&nbsp;T. J. Parker","doi":"10.1029/2024JE008763","DOIUrl":null,"url":null,"abstract":"<p>The Jau crater cluster on the north flank of Mt. Sharp in the Gale crater consists of 20–30 simultaneously formed impact structures. The craters are ∼2 to ∼25 m across (generally increasing in size from the ESE to WNW). Using Digital Terrain Models derived from orbital and rover orthomosaics of two of the larger craters, we evaluated the amount and processes of degradation based upon current versus expected original crater morphology. We conclude that the craters in the cluster are the result of a fragmenting primary impactor and that predominantly aeolian degradation at these two craters is responsible for ∼1–2 m wall back-wasting, 10s of cm of infilling by aeolian drift, and 20–40 cm rim lowering. Other craters in the cluster experienced similar degradation whose expression varied according to crater size: smaller-scale morphology at smaller craters is more modified by a given amount of erosion. Prevailing winds erode the downhill, NNE side of the craters more though raised rims persist at the larger craters. An estimated vertical erosion rate of 0.1 m/Myr and a horizontal erosion rate of several m/Myr predicted by others appear most consistent with the Jau crater morphology and setting relative to erosion estimates for elsewhere in Gale crater and other Mars landing sites. Factoring in uncertainties in our estimates, these rates are broadly consistent with the scale of erosion inferred for the evolution of larger, older features on Mt. Sharp and suggest that the cluster-forming impact occurred one to a few and less than ∼5 Ma.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008763","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Jau crater cluster on the north flank of Mt. Sharp in the Gale crater consists of 20–30 simultaneously formed impact structures. The craters are ∼2 to ∼25 m across (generally increasing in size from the ESE to WNW). Using Digital Terrain Models derived from orbital and rover orthomosaics of two of the larger craters, we evaluated the amount and processes of degradation based upon current versus expected original crater morphology. We conclude that the craters in the cluster are the result of a fragmenting primary impactor and that predominantly aeolian degradation at these two craters is responsible for ∼1–2 m wall back-wasting, 10s of cm of infilling by aeolian drift, and 20–40 cm rim lowering. Other craters in the cluster experienced similar degradation whose expression varied according to crater size: smaller-scale morphology at smaller craters is more modified by a given amount of erosion. Prevailing winds erode the downhill, NNE side of the craters more though raised rims persist at the larger craters. An estimated vertical erosion rate of 0.1 m/Myr and a horizontal erosion rate of several m/Myr predicted by others appear most consistent with the Jau crater morphology and setting relative to erosion estimates for elsewhere in Gale crater and other Mars landing sites. Factoring in uncertainties in our estimates, these rates are broadly consistent with the scale of erosion inferred for the evolution of larger, older features on Mt. Sharp and suggest that the cluster-forming impact occurred one to a few and less than ∼5 Ma.

探索火星盖尔陨坑Jau陨石坑群
盖尔陨石坑中夏普山北侧的Jau陨石坑群由20-30个同时形成的撞击结构组成。陨石坑的直径为~ 2 ~ ~ 25米(通常从东南方向到西北方向的大小增加)。利用从两个较大陨石坑的轨道和漫游者正形图中获得的数字地形模型,我们根据当前和预期的原始陨石坑形态评估了退化的数量和过程。我们得出的结论是,集群中的陨石坑是破碎的主要撞击物的结果,这两个陨石坑的主要风蚀作用是造成~ 1-2 m的壁面反蚀,10s的风蚀漂移填充物,以及20-40 cm的边缘下降。星系团中的其他陨石坑也经历了类似的退化,其表现因陨石坑的大小而异:较小陨石坑的较小尺度形态受到一定数量的侵蚀的影响更大。盛行风侵蚀下坡,陨石坑的东北偏北一侧,尽管凸起的边缘在较大的陨石坑中持续存在。据估计,垂直侵蚀速率为0.1 m/Myr,其他人预测的水平侵蚀速率为几m/Myr,这与乔陨石坑的形态和相对于盖尔陨石坑和其他火星着陆点的其他地方的侵蚀估计最一致。考虑到我们估计中的不确定性,这些速率与夏普山上更大、更古老的特征的演化所推断的侵蚀规模大致一致,并表明星团形成的影响发生在1到几次,小于~ 5 Ma。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信