Application of machine learning for quantitative analysis of industrial fermentation using image processing

IF 2.4 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Jieun Jeong, Sangoh Kim
{"title":"Application of machine learning for quantitative analysis of industrial fermentation using image processing","authors":"Jieun Jeong,&nbsp;Sangoh Kim","doi":"10.1007/s10068-024-01744-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Real-time Fermentation Quantification Sensor (RFQS) was developed to quantitatively assess fermentation by detecting airlock bubbles created by fermentation gas pressure. The Convolutional Neural Network-based Fermentation Measurement Model was integrated into the RFQS to analyze and classify these bubble images, enabling continuous fermentation monitoring and real-time fermentation degree measurement. Validation experiments revealed that varying the quantities of dry yeast and glucose significantly impacted fermentation duration and degree. Upon fermentation completion, the total degree was calculated using real-time data. These results confirmed that AI-based image processing technology can effectively serve as a quantitative measurement tool in the fermentation food industry.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"34 2","pages":"373 - 381"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01744-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Real-time Fermentation Quantification Sensor (RFQS) was developed to quantitatively assess fermentation by detecting airlock bubbles created by fermentation gas pressure. The Convolutional Neural Network-based Fermentation Measurement Model was integrated into the RFQS to analyze and classify these bubble images, enabling continuous fermentation monitoring and real-time fermentation degree measurement. Validation experiments revealed that varying the quantities of dry yeast and glucose significantly impacted fermentation duration and degree. Upon fermentation completion, the total degree was calculated using real-time data. These results confirmed that AI-based image processing technology can effectively serve as a quantitative measurement tool in the fermentation food industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Science and Biotechnology
Food Science and Biotechnology FOOD SCIENCE & TECHNOLOGY-
CiteScore
5.40
自引率
3.40%
发文量
174
审稿时长
2.3 months
期刊介绍: The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信