Sparse Regularization With Reverse Sorted Sum of Squares via an Unrolled Difference-of-Convex Approach

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Takayuki Sasaki;Kazuya Hayase;Masaki Kitahara;Shunsuke Ono
{"title":"Sparse Regularization With Reverse Sorted Sum of Squares via an Unrolled Difference-of-Convex Approach","authors":"Takayuki Sasaki;Kazuya Hayase;Masaki Kitahara;Shunsuke Ono","doi":"10.1109/OJSP.2025.3529312","DOIUrl":null,"url":null,"abstract":"This paper proposes a sparse regularization method with a novel sorted regularization function. Sparse regularization is commonly used to solve underdetermined inverse problems. Traditional sparse regularization functions, such as <inline-formula><tex-math>$L_{1}$</tex-math></inline-formula>-norm, suffer from problems like amplitude underestimation and vanishing perturbations. The reverse ordered weighted <inline-formula><tex-math>$L_{1}$</tex-math></inline-formula>-norm (ROWL) addresses these issues but introduces new challenges. These include developing an algorithm grounded in theory, not heuristics, reducing computational complexity, enabling the automatic determination of numerous parameters, and ensuring the number of iterations remains feasible. In this study, we propose a novel sparse regularization function called the reverse sorted sum of squares (RSSS) and then construct an unrolled algorithm that addresses both the aforementioned two problems and these four challenges. The core idea of our proposed method lies in transforming the optimization problem into a difference-of-convex programming problem, for which solutions are known. In experiments, we apply the RSSS regularization method to image deblurring and super-resolution tasks and confirmed its superior performance compared to conventional methods, all with feasible computational complexity.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"57-67"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840312","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840312/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a sparse regularization method with a novel sorted regularization function. Sparse regularization is commonly used to solve underdetermined inverse problems. Traditional sparse regularization functions, such as $L_{1}$-norm, suffer from problems like amplitude underestimation and vanishing perturbations. The reverse ordered weighted $L_{1}$-norm (ROWL) addresses these issues but introduces new challenges. These include developing an algorithm grounded in theory, not heuristics, reducing computational complexity, enabling the automatic determination of numerous parameters, and ensuring the number of iterations remains feasible. In this study, we propose a novel sparse regularization function called the reverse sorted sum of squares (RSSS) and then construct an unrolled algorithm that addresses both the aforementioned two problems and these four challenges. The core idea of our proposed method lies in transforming the optimization problem into a difference-of-convex programming problem, for which solutions are known. In experiments, we apply the RSSS regularization method to image deblurring and super-resolution tasks and confirmed its superior performance compared to conventional methods, all with feasible computational complexity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信