Illuminating the black box: An interpretable machine learning based on ensemble trees

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yue-Shi Lee , Show-Jane Yen , Wendong Jiang , Jiyuan Chen , Chih-Yung Chang
{"title":"Illuminating the black box: An interpretable machine learning based on ensemble trees","authors":"Yue-Shi Lee ,&nbsp;Show-Jane Yen ,&nbsp;Wendong Jiang ,&nbsp;Jiyuan Chen ,&nbsp;Chih-Yung Chang","doi":"10.1016/j.eswa.2025.126720","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has achieved significant success in the analysis of unstructured data, but its inherent black-box nature has led to numerous limitations in security-sensitive domains. Although many existing interpretable machine learning methods can partially address this issue, they often face challenges such as model limitations, interpretability randomness, and a lack of global interpretability. To address these challenges, this paper introduces an innovative interpretable ensemble tree method, EnEXP. This method generates a sample set by applying fixed masking perturbation to individual samples, then constructs multiple decision trees using bagging and boosting techniques and interprets them based on the importance outputs of these trees, thereby achieving a global interpretation of the entire dataset through the aggregation of all sample insights. Experimental results demonstrate that EnEXP possesses superior explanatory power compared to other interpretable methods. In text processing experiments, the bag-of-words model optimized by EnEXP outperformed the GPT-3 Ada fine-tuned model.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"272 ","pages":"Article 126720"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425003422","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has achieved significant success in the analysis of unstructured data, but its inherent black-box nature has led to numerous limitations in security-sensitive domains. Although many existing interpretable machine learning methods can partially address this issue, they often face challenges such as model limitations, interpretability randomness, and a lack of global interpretability. To address these challenges, this paper introduces an innovative interpretable ensemble tree method, EnEXP. This method generates a sample set by applying fixed masking perturbation to individual samples, then constructs multiple decision trees using bagging and boosting techniques and interprets them based on the importance outputs of these trees, thereby achieving a global interpretation of the entire dataset through the aggregation of all sample insights. Experimental results demonstrate that EnEXP possesses superior explanatory power compared to other interpretable methods. In text processing experiments, the bag-of-words model optimized by EnEXP outperformed the GPT-3 Ada fine-tuned model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信