IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-02-07 DOI:10.1016/j.mex.2025.103201
Jayapradha J , Su-Cheng Haw , Naveen Palanichamy , Kok-Why Ng , Senthil Kumar Thillaigovindhan
{"title":"IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT","authors":"Jayapradha J ,&nbsp;Su-Cheng Haw ,&nbsp;Naveen Palanichamy ,&nbsp;Kok-Why Ng ,&nbsp;Senthil Kumar Thillaigovindhan","doi":"10.1016/j.mex.2025.103201","DOIUrl":null,"url":null,"abstract":"<div><div>In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to develop an Integrated Model (IM- LTS) for Lung Tumor Segmentation using Neural Networks (NN) and the Internet of Medical Things (IoMT). The model integrates two architectures, MobileNetV2 and U-NET, for classifying the input lung data. The input CT lung images are pre-processed using Z-score Normalization. The semantic features of lung images are extracted based on texture, intensity, and shape to provide information to the training network.<ul><li><span>•</span><span><div>In this work, the transfer learning technique is incorporated, and the pre-trained NN was used as an encoder for the U-NET model for segmentation. Furthermore, Support Vector Machine is used here to classify input lung data as benign and malignant.</div></span></li><li><span>•</span><span><div>The results are measured based on the metrics such as, specificity, sensitivity, precision, accuracy and F-Score, using the data from benchmark datasets. Compared to the existing lung tumor segmentation and classification models, the proposed model provides better results and evidence for earlier disease diagnosis.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103201"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent days, Internet of Medical Things (IoMT) and Deep Learning (DL) techniques are broadly used in medical data processing in decision-making. A lung tumour, one of the most dangerous medical diseases, requires early diagnosis with a higher precision rate. With that concern, this work aims to develop an Integrated Model (IM- LTS) for Lung Tumor Segmentation using Neural Networks (NN) and the Internet of Medical Things (IoMT). The model integrates two architectures, MobileNetV2 and U-NET, for classifying the input lung data. The input CT lung images are pre-processed using Z-score Normalization. The semantic features of lung images are extracted based on texture, intensity, and shape to provide information to the training network.
  • In this work, the transfer learning technique is incorporated, and the pre-trained NN was used as an encoder for the U-NET model for segmentation. Furthermore, Support Vector Machine is used here to classify input lung data as benign and malignant.
  • The results are measured based on the metrics such as, specificity, sensitivity, precision, accuracy and F-Score, using the data from benchmark datasets. Compared to the existing lung tumor segmentation and classification models, the proposed model provides better results and evidence for earlier disease diagnosis.

Abstract Image

基于神经网络和IoMT的肺肿瘤分割集成模型
近年来,医疗物联网(IoMT)和深度学习(DL)技术被广泛应用于医疗数据处理决策中。肺肿瘤是最危险的医学疾病之一,需要早期诊断,准确率更高。鉴于此,本研究旨在利用神经网络(NN)和医疗物联网(IoMT)开发一种用于肺肿瘤分割的集成模型(IM- LTS)。该模型集成了MobileNetV2和U-NET两种体系结构,用于对输入的肺数据进行分类。对输入的CT肺图像进行Z-score归一化预处理。基于纹理、强度和形状提取肺图像的语义特征,为训练网络提供信息。•在这项工作中,结合了迁移学习技术,并将预训练的神经网络用作U-NET模型的编码器,用于分割。此外,这里使用支持向量机对输入的肺数据进行良性和恶性分类。•使用基准数据集的数据,根据特异性、敏感性、精密度、准确度和F-Score等指标测量结果。与现有的肺肿瘤分割和分类模型相比,该模型为早期疾病诊断提供了更好的结果和证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信