Experimental and numerical investigations on the synergistic effect of plasma nitriding and notch size on the fatigue properties of AISI 4140 steel

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
F. Yılan , H. Kovacı
{"title":"Experimental and numerical investigations on the synergistic effect of plasma nitriding and notch size on the fatigue properties of AISI 4140 steel","authors":"F. Yılan ,&nbsp;H. Kovacı","doi":"10.1016/j.tafmec.2025.104864","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering structures across various sectors frequently experience fatigue damage under operational conditions, which significantly reduces their operational lifespan. Moreover, fatigue strength of the materials reduces when they have geometries such as notches and sharp corners because they constitute stress concentrations. On the other hand, different surface treatments can efficiently increase in managing the lifetime and performance of materials. In the current study, the fatigue properties of untreated and plasma nitrided notched steel samples were compared through numerical analyses and fatigue experiments. For this investigation, fatigue test specimens with different notch sizes made out of AISI 4140 steel were plasma nitrided at 460 °C and 535 °C for 9 h in a glow discharge environment. The specimens were analysed using XRD, SEM, and microhardness tester to ascertain their structural, morphological, and mechanical characterization. The notch fatigue behaviour of nitride samples was analysed numerically by the Finite Element Analysis (FEA). Furthermore, a rotational bending fatigue test system was utilized to conduct fatigue tests and consequently, fatigue date obtained from experimental results and FEA were compared. It was found that the thicknesses of compound layer and diffusion zone, compressive residual stresses, and hardness enhanced as the process temperature increased. Additionally, an increase of by up to 110 % was obtained in the notch fatigue resistance of the specimens under constant amplitude loading. According to the results obtained, it was observed that there were acceptable errors between the experimentally obtained values and the values obtained from the FEA. The results show that in all plasma nitrided notched samples, the fatigue crack initiation shifted towards the core and thus the fatigue strength increased, and especially at the increasing plasma nitriding process temperature, the R4 and R8 notch geometries exhibited better fatigue performance improvement than the other samples.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"137 ","pages":"Article 104864"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844225000229","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering structures across various sectors frequently experience fatigue damage under operational conditions, which significantly reduces their operational lifespan. Moreover, fatigue strength of the materials reduces when they have geometries such as notches and sharp corners because they constitute stress concentrations. On the other hand, different surface treatments can efficiently increase in managing the lifetime and performance of materials. In the current study, the fatigue properties of untreated and plasma nitrided notched steel samples were compared through numerical analyses and fatigue experiments. For this investigation, fatigue test specimens with different notch sizes made out of AISI 4140 steel were plasma nitrided at 460 °C and 535 °C for 9 h in a glow discharge environment. The specimens were analysed using XRD, SEM, and microhardness tester to ascertain their structural, morphological, and mechanical characterization. The notch fatigue behaviour of nitride samples was analysed numerically by the Finite Element Analysis (FEA). Furthermore, a rotational bending fatigue test system was utilized to conduct fatigue tests and consequently, fatigue date obtained from experimental results and FEA were compared. It was found that the thicknesses of compound layer and diffusion zone, compressive residual stresses, and hardness enhanced as the process temperature increased. Additionally, an increase of by up to 110 % was obtained in the notch fatigue resistance of the specimens under constant amplitude loading. According to the results obtained, it was observed that there were acceptable errors between the experimentally obtained values and the values obtained from the FEA. The results show that in all plasma nitrided notched samples, the fatigue crack initiation shifted towards the core and thus the fatigue strength increased, and especially at the increasing plasma nitriding process temperature, the R4 and R8 notch geometries exhibited better fatigue performance improvement than the other samples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信