{"title":"Different approaches for testing body sensor network applications","authors":"Samira Silva , Ricardo Caldas , Patrizio Pelliccione , Antonia Bertolino","doi":"10.1016/j.jss.2025.112336","DOIUrl":null,"url":null,"abstract":"<div><div>Body Sensor Networks (BSNs) offer a cost-effective way to monitor patients’ health and detect potential risks. Despite the growing interest attracted by BSNs, there is a lack of testing approaches for them. Testing a Body Sensor Network (BSN) is challenging due to its evolving nature, the complexity of sensor scenarios and their fusion, the potential necessity of third-party testing for certification, and the need to prioritize critical failures given limited resources. This paper addresses these challenges by proposing three BSN testing approaches: PASTA, ValComb, and TransCov. These approaches share common characteristics, which are described through a general framework called GATE4BSN. PASTA simulates patients with sensors and models sensor trends using a Discrete Time Markov Chain (DTMC). ValComb explores various health conditions by considering all sensor risk level combinations, while TransCov ensures full coverage of DTMC transitions. We empirically evaluate these approaches, comparing them with a baseline approach in terms of failure detection. The results demonstrate that PASTA, ValComb, and TransCov uncover previously undetected failures in an open-source BSN and outperform the baseline approach. Statistical analysis reveals that PASTA is the most effective, while ValComb is 76 times faster than PASTA and nearly as effective.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"223 ","pages":"Article 112336"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000044","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Body Sensor Networks (BSNs) offer a cost-effective way to monitor patients’ health and detect potential risks. Despite the growing interest attracted by BSNs, there is a lack of testing approaches for them. Testing a Body Sensor Network (BSN) is challenging due to its evolving nature, the complexity of sensor scenarios and their fusion, the potential necessity of third-party testing for certification, and the need to prioritize critical failures given limited resources. This paper addresses these challenges by proposing three BSN testing approaches: PASTA, ValComb, and TransCov. These approaches share common characteristics, which are described through a general framework called GATE4BSN. PASTA simulates patients with sensors and models sensor trends using a Discrete Time Markov Chain (DTMC). ValComb explores various health conditions by considering all sensor risk level combinations, while TransCov ensures full coverage of DTMC transitions. We empirically evaluate these approaches, comparing them with a baseline approach in terms of failure detection. The results demonstrate that PASTA, ValComb, and TransCov uncover previously undetected failures in an open-source BSN and outperform the baseline approach. Statistical analysis reveals that PASTA is the most effective, while ValComb is 76 times faster than PASTA and nearly as effective.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.