Skillful prediction of Indian Ocean Dipole index using machine learning models

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
J.V. Ratnam, Swadhin K. Behera, Masami Nonaka, Kalpesh R. Patil
{"title":"Skillful prediction of Indian Ocean Dipole index using machine learning models","authors":"J.V. Ratnam,&nbsp;Swadhin K. Behera,&nbsp;Masami Nonaka,&nbsp;Kalpesh R. Patil","doi":"10.1016/j.acags.2025.100228","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we evaluated six machine learning models for their skill in predicting the Indian Ocean Dipole (IOD). The results based on the IOD index predictions at 1–8 month lead time indicate that the AdaBoost model with Multi-Layer Perceptron as the base estimator, AdaBoost(MLP), to perform better than the other five models in predicting the IOD index at all lead times. Interestingly, the IOD predictions of AdaBoost(MLP) had an anomaly correlation coefficient above 0.6 at almost all lead times. The results suggest that the AdaBoost(MLP) machine learning model to be a promising tool for predicting the IOD index with a long lead time of 8 months. Analysis revealed that the machine learning model predictions are aided by the signals from the Pacific region, owing to co-occurrences of some of the IODs with El Nino-Southern Oscillations.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"25 ","pages":"Article 100228"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we evaluated six machine learning models for their skill in predicting the Indian Ocean Dipole (IOD). The results based on the IOD index predictions at 1–8 month lead time indicate that the AdaBoost model with Multi-Layer Perceptron as the base estimator, AdaBoost(MLP), to perform better than the other five models in predicting the IOD index at all lead times. Interestingly, the IOD predictions of AdaBoost(MLP) had an anomaly correlation coefficient above 0.6 at almost all lead times. The results suggest that the AdaBoost(MLP) machine learning model to be a promising tool for predicting the IOD index with a long lead time of 8 months. Analysis revealed that the machine learning model predictions are aided by the signals from the Pacific region, owing to co-occurrences of some of the IODs with El Nino-Southern Oscillations.
利用机器学习模型熟练预测印度洋偶极子指数
在这项研究中,我们评估了六种机器学习模型在预测印度洋偶极子(IOD)方面的技能。基于提前期1-8个月的IOD指数预测结果表明,以多层感知器为基本估计器的AdaBoost模型(MLP)在预测所有提前期的IOD指数方面都优于其他5种模型。有趣的是,AdaBoost(MLP)的IOD预测在几乎所有提前期的异常相关系数都在0.6以上。结果表明,AdaBoost(MLP)机器学习模型是预测IOD指数的一个很有前途的工具,提前期为8个月。分析表明,由于一些iod与厄尔尼诺-南方涛动共同出现,机器学习模型的预测得到了来自太平洋地区的信号的辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信