Blockchain based lightweight authentication scheme for internet of things using lattice encryption algorithm

IF 4.1 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yingpan Kuang, Qiwen Wu, Riqing Chen, Xiaolong Liu
{"title":"Blockchain based lightweight authentication scheme for internet of things using lattice encryption algorithm","authors":"Yingpan Kuang,&nbsp;Qiwen Wu,&nbsp;Riqing Chen,&nbsp;Xiaolong Liu","doi":"10.1016/j.csi.2025.103981","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of the Internet of Things (IoT), robust and secure authentication among interconnected devices has become increasingly significant. Existing cryptographic methods, despite their effectiveness, face challenges in scalability, quantum vulnerability, and high computational demands, which are particularly problematic for resource-constrained IoT devices. This paper proposes a novel and lightweight authentication scheme for IoT devices that combines the decentralization of blockchain with the efficiency of lattice-based cryptography to address these security concerns. The proposed scheme employs a decentralized identity management model built on blockchain, eliminating vulnerable central points and enhancing system resilience. For user and device authentication, an efficient lattice-based protocol is introduced, utilizing simplified hash operations and matrix–vector multiplication for key negotiation and authentication. This approach significantly reduces both computational complexity and communication overhead compared to traditional methods such as ECC-based schemes. Specifically, at a 100-bit security level, our scheme achieves authentication and key agreement in approximately <span><math><mrow><mn>257</mn><mo>.</mo><mn>401</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> and maintains a communication cost of 1052 bits per authentication session. Comprehensive performance analyses demonstrate that the proposed scheme can withstand typical cryptographic attacks and offers advantages in quantum computing resistance. Additionally, the blockchain-based design ensures high scalability, making the scheme ideal for large-scale IoT deployments without performance degradation. Experimental results further validate the scheme’s practical applicability in resource-constrained IoT environments, highlighting its superior computational response times and lower communication costs compared to existing IoT authentication solutions.</div></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"93 ","pages":"Article 103981"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548925000108","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the Internet of Things (IoT), robust and secure authentication among interconnected devices has become increasingly significant. Existing cryptographic methods, despite their effectiveness, face challenges in scalability, quantum vulnerability, and high computational demands, which are particularly problematic for resource-constrained IoT devices. This paper proposes a novel and lightweight authentication scheme for IoT devices that combines the decentralization of blockchain with the efficiency of lattice-based cryptography to address these security concerns. The proposed scheme employs a decentralized identity management model built on blockchain, eliminating vulnerable central points and enhancing system resilience. For user and device authentication, an efficient lattice-based protocol is introduced, utilizing simplified hash operations and matrix–vector multiplication for key negotiation and authentication. This approach significantly reduces both computational complexity and communication overhead compared to traditional methods such as ECC-based schemes. Specifically, at a 100-bit security level, our scheme achieves authentication and key agreement in approximately 257.401μs and maintains a communication cost of 1052 bits per authentication session. Comprehensive performance analyses demonstrate that the proposed scheme can withstand typical cryptographic attacks and offers advantages in quantum computing resistance. Additionally, the blockchain-based design ensures high scalability, making the scheme ideal for large-scale IoT deployments without performance degradation. Experimental results further validate the scheme’s practical applicability in resource-constrained IoT environments, highlighting its superior computational response times and lower communication costs compared to existing IoT authentication solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Standards & Interfaces
Computer Standards & Interfaces 工程技术-计算机:软件工程
CiteScore
11.90
自引率
16.00%
发文量
67
审稿时长
6 months
期刊介绍: The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking. Computer Standards & Interfaces is an international journal dealing specifically with these topics. The journal • Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels • Publishes critical comments on standards and standards activities • Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods • Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts • Stimulates relevant research by providing a specialised refereed medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信