Hybrid Binary SGO-GA for solving MAX-SAT problem

Rhiddhi Prasad Das , Anuruddha Paul , Junali Jasmine Jena , Bibhuti Bhusan Dash , Utpal Chandra De , Mahendra Kumar Gourisaria
{"title":"Hybrid Binary SGO-GA for solving MAX-SAT problem","authors":"Rhiddhi Prasad Das ,&nbsp;Anuruddha Paul ,&nbsp;Junali Jasmine Jena ,&nbsp;Bibhuti Bhusan Dash ,&nbsp;Utpal Chandra De ,&nbsp;Mahendra Kumar Gourisaria","doi":"10.1016/j.procs.2025.01.055","DOIUrl":null,"url":null,"abstract":"<div><div>The Maximum Satisfiability Problem (MAX-SAT) is a crucial NP-hard optimization problem with applications in artificial intelligence, circuit design, scheduling, and combinatorial optimization. In this work, we provide a unique hybrid strategy that blends Genetic Algorithms (GA) with Social Group Optimization (SGO) algorithm to effectively solve the MAX-SAT problem. The SGO algorithm, inspired by the social behavior of groups, excels in exploring diverse regions of the search space. w used a binary variant of SGO i.e. Binary-SGO which is defined specifically for binary search spaces, while GA leverages evolutionary principles to exploit local optima through selection, crossover, and mutation. By integrating the exploration capabilities of SGO with the exploitation strengths of GA, the hybrid approach strikes an optimal balance between global and local search. Extensive experimental evaluations conducted on standard MAX-SAT benchmarks demonstrate that our hybrid algorithm outperforms several existing state-of-the-art meta-heuristic algorithms. Hybrid BSGO-GA achieved the highest average fitness values, with an average accuracy of 99.7% in Experiment 1, 99.61% in Experiment 2, and 99.21% in Experiment 3 and achieved complete satisfiability in 55 out of 75 cases in Experiment 1, 42 out of 75 cases in Experiment 2, and 7 out of 75 cases in Experiment 3. This approach demonstrates the potential of hybrid metaheuristics in addressing complex optimization problems and offers a robust framework for tackling other NP-hard problems.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 944-953"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Maximum Satisfiability Problem (MAX-SAT) is a crucial NP-hard optimization problem with applications in artificial intelligence, circuit design, scheduling, and combinatorial optimization. In this work, we provide a unique hybrid strategy that blends Genetic Algorithms (GA) with Social Group Optimization (SGO) algorithm to effectively solve the MAX-SAT problem. The SGO algorithm, inspired by the social behavior of groups, excels in exploring diverse regions of the search space. w used a binary variant of SGO i.e. Binary-SGO which is defined specifically for binary search spaces, while GA leverages evolutionary principles to exploit local optima through selection, crossover, and mutation. By integrating the exploration capabilities of SGO with the exploitation strengths of GA, the hybrid approach strikes an optimal balance between global and local search. Extensive experimental evaluations conducted on standard MAX-SAT benchmarks demonstrate that our hybrid algorithm outperforms several existing state-of-the-art meta-heuristic algorithms. Hybrid BSGO-GA achieved the highest average fitness values, with an average accuracy of 99.7% in Experiment 1, 99.61% in Experiment 2, and 99.21% in Experiment 3 and achieved complete satisfiability in 55 out of 75 cases in Experiment 1, 42 out of 75 cases in Experiment 2, and 7 out of 75 cases in Experiment 3. This approach demonstrates the potential of hybrid metaheuristics in addressing complex optimization problems and offers a robust framework for tackling other NP-hard problems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信