Emodin-8-O-β-D-glucopyranoside alleviates cholestasis by maintaining intestinal homeostasis and regulating lipids and bile acids metabolism in mice

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL
Xiaolin Wu , Qiao Yu , Yuzhao Hou , Xuemei Zhang , Simon Sani Ocholi , Liming Wang , Ziping Yan , Jie Li , Lifeng Han
{"title":"Emodin-8-O-β-D-glucopyranoside alleviates cholestasis by maintaining intestinal homeostasis and regulating lipids and bile acids metabolism in mice","authors":"Xiaolin Wu ,&nbsp;Qiao Yu ,&nbsp;Yuzhao Hou ,&nbsp;Xuemei Zhang ,&nbsp;Simon Sani Ocholi ,&nbsp;Liming Wang ,&nbsp;Ziping Yan ,&nbsp;Jie Li ,&nbsp;Lifeng Han","doi":"10.1016/j.jpba.2025.116734","DOIUrl":null,"url":null,"abstract":"<div><div>Cholestatic liver disease(CLD) is caused by impaired bile flow due to obstruction of the biliary tract, and long-term exposure to bile acids in the liver triggers inflammation, eventually leading to liver toxicity and liver fibrosis. Emodin-8-<em>O-β</em>-D-glucopyranoside(EG) is anthraquinone compound that is widely found in traditional Chinese medicine. It possessed antioxidative and anti-inflammatory activities. However, the effect of EG on cholestatic liver injury(CLI) has not been explored. In this study, Alpha-naphthyl isothiocyanate(ANIT)-induced CLI mice were used to investigate the anti-cholestasis and hepatoprotective effects of EG through serum biochemical index detection, non-targeted metabolomics, lipidomics, and intestinal flora 16S rRNA sequencing. The results suggested that EG restores homeostasis of the gut microbiome while regulating bile acids metabolism and lipid-related metabolic pathways to reduce liver damage in ANIT-induced cholestasis. This study provides a new perspective on the mechanism of EG, and help offer a more natural approach to managing liver damage.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"258 ","pages":"Article 116734"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525000755","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cholestatic liver disease(CLD) is caused by impaired bile flow due to obstruction of the biliary tract, and long-term exposure to bile acids in the liver triggers inflammation, eventually leading to liver toxicity and liver fibrosis. Emodin-8-O-β-D-glucopyranoside(EG) is anthraquinone compound that is widely found in traditional Chinese medicine. It possessed antioxidative and anti-inflammatory activities. However, the effect of EG on cholestatic liver injury(CLI) has not been explored. In this study, Alpha-naphthyl isothiocyanate(ANIT)-induced CLI mice were used to investigate the anti-cholestasis and hepatoprotective effects of EG through serum biochemical index detection, non-targeted metabolomics, lipidomics, and intestinal flora 16S rRNA sequencing. The results suggested that EG restores homeostasis of the gut microbiome while regulating bile acids metabolism and lipid-related metabolic pathways to reduce liver damage in ANIT-induced cholestasis. This study provides a new perspective on the mechanism of EG, and help offer a more natural approach to managing liver damage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信