A GAN-Enhanced Multimodal Diagnostic Framework Utilizing an Ensemble of BiLSTM, BiGRU, and RNN Models for Malaria and Dengue Detection

Rathnakar Achary, Chetan J Shelke, Alluru Lekhya
{"title":"A GAN-Enhanced Multimodal Diagnostic Framework Utilizing an Ensemble of BiLSTM, BiGRU, and RNN Models for Malaria and Dengue Detection","authors":"Rathnakar Achary,&nbsp;Chetan J Shelke,&nbsp;Alluru Lekhya","doi":"10.1016/j.procs.2024.12.039","DOIUrl":null,"url":null,"abstract":"<div><div>Quick detection of Malaria and Dengue is crucial for doctors to start treatment and manage patients effectively. As patient conditions become more complex with overlapping symptoms, traditional diagnostic tools become inefficient, slow, and less accurate. Modernizing diagnostics with AI-powered systems is essential. Inaccurate or delayed diagnoses lead to transmission and sustained spread of these diseases. Improving diagnostic tools with accuracy, precision, recall, and speed enhances patient outcomes, reduces infection spread, and streamlines health sector operations. Despite advances, current diagnostic algorithms have weaknesses, especially in applying machine learning to diverse datasets at granular levels. Continuous effort is needed to improve accuracy and recall. This research proposes a GAN-Based Synthesized Multimodal Diagnostic System, combining BiLSTM, BiGRU, and RNN approaches. Utilizing GANs for data augmentation and recurrent networks, this framework shows innovative infectious disease detection. It improves diagnostic precision by 4.9%, accuracy by 3.5%, recall by 3.5%, and AUC by 4.5%, while reducing the gap between disease progression and detection by 8.3%. These outcomes can reduce triage time, misdiagnoses, and lead to faster, quality healthcare. The GAN-Enhanced Multimodal Diagnostic Framework shows promise for diagnosing Malaria, Dengue, and other infectious diseases.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 381-393"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924034719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quick detection of Malaria and Dengue is crucial for doctors to start treatment and manage patients effectively. As patient conditions become more complex with overlapping symptoms, traditional diagnostic tools become inefficient, slow, and less accurate. Modernizing diagnostics with AI-powered systems is essential. Inaccurate or delayed diagnoses lead to transmission and sustained spread of these diseases. Improving diagnostic tools with accuracy, precision, recall, and speed enhances patient outcomes, reduces infection spread, and streamlines health sector operations. Despite advances, current diagnostic algorithms have weaknesses, especially in applying machine learning to diverse datasets at granular levels. Continuous effort is needed to improve accuracy and recall. This research proposes a GAN-Based Synthesized Multimodal Diagnostic System, combining BiLSTM, BiGRU, and RNN approaches. Utilizing GANs for data augmentation and recurrent networks, this framework shows innovative infectious disease detection. It improves diagnostic precision by 4.9%, accuracy by 3.5%, recall by 3.5%, and AUC by 4.5%, while reducing the gap between disease progression and detection by 8.3%. These outcomes can reduce triage time, misdiagnoses, and lead to faster, quality healthcare. The GAN-Enhanced Multimodal Diagnostic Framework shows promise for diagnosing Malaria, Dengue, and other infectious diseases.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信