Implementation of Multi-Label Fuzzy Classification System using Topic Detection Data set

R. Kanagaraj , N. Krishnaraj , J. Selvakumar , J. Ramprasath
{"title":"Implementation of Multi-Label Fuzzy Classification System using Topic Detection Data set","authors":"R. Kanagaraj ,&nbsp;N. Krishnaraj ,&nbsp;J. Selvakumar ,&nbsp;J. Ramprasath","doi":"10.1016/j.procs.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Multiclass Classification can be implemented by using consequent approaches to translate the multiclass problem into binary class classification problems and fuzzy classification methods. This work proposes a predictive analysis of the multiclass fuzzy Classification integrated with time series historical data and topic detection. The fuzzy classification techniques can be successfully applied to Topic detection and sub-topic detection. Text databases’ manual topic detection method must be more feasible, uncontrollable and effective. Thus, initiating the huge amount of data implemented by manual methods is idealistic. Fuzzy historical data is more significant for data analysis in different models to make predictions. Innumerable fuzzy logic on time series methods has been implemented for data prediction. A Multiclass Fuzzy Time Series Classification Algorithm has been implemented to analyze and predict the topic detection database. The outcomes of the Fuzzy classification technique have been implemented for the need for an extensive pattern of topic detection. An enhanced Multiclass Fuzzy Time Series Classification Algorithm has been applied to achieve the efficient de-fuzzification operation of the topic detection data set. To illuminate the forecasting method, the historical data of multi-labeled has been used for the predictive model. The investigation result illustrates that the MHTSC algorithm generates mode fuzzy classification and irregular rules, efficiently reducing the error rate from multi-labeled data.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 15-24"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924034355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiclass Classification can be implemented by using consequent approaches to translate the multiclass problem into binary class classification problems and fuzzy classification methods. This work proposes a predictive analysis of the multiclass fuzzy Classification integrated with time series historical data and topic detection. The fuzzy classification techniques can be successfully applied to Topic detection and sub-topic detection. Text databases’ manual topic detection method must be more feasible, uncontrollable and effective. Thus, initiating the huge amount of data implemented by manual methods is idealistic. Fuzzy historical data is more significant for data analysis in different models to make predictions. Innumerable fuzzy logic on time series methods has been implemented for data prediction. A Multiclass Fuzzy Time Series Classification Algorithm has been implemented to analyze and predict the topic detection database. The outcomes of the Fuzzy classification technique have been implemented for the need for an extensive pattern of topic detection. An enhanced Multiclass Fuzzy Time Series Classification Algorithm has been applied to achieve the efficient de-fuzzification operation of the topic detection data set. To illuminate the forecasting method, the historical data of multi-labeled has been used for the predictive model. The investigation result illustrates that the MHTSC algorithm generates mode fuzzy classification and irregular rules, efficiently reducing the error rate from multi-labeled data.
基于主题检测数据集的多标签模糊分类系统实现
多类分类可以通过使用顺次方法将多类问题转化为二分类问题和模糊分类方法来实现。本文提出了一种结合时间序列历史数据和主题检测的多类模糊分类预测分析方法。模糊分类技术可以成功地应用于主题检测和子主题检测。文本数据库的人工主题检测方法必须更具可行性、不可控性和有效性。因此,初始化通过手工方法实现的大量数据是理想的。模糊历史数据对于不同模型下的数据分析进行预测更为重要。时间序列上的无数模糊逻辑方法已被用于数据预测。采用多类模糊时间序列分类算法对主题检测数据库进行分析和预测。由于需要广泛的主题检测模式,模糊分类技术的结果已经实现。采用增强型多类模糊时间序列分类算法对主题检测数据集进行高效的去模糊化处理。为了说明这种预测方法,我们将多标签的历史数据用于预测模型。研究结果表明,MHTSC算法生成模式模糊分类和不规则规则,有效地降低了多标签数据的错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信