A pyDAOS Approach for Enabling Efficient Data Handling in DAOS

Chandrika Prasad , Geetha J Dr , Vinay M , Manoj V L , Bharath Vamsi , D. Malavika Dileepa
{"title":"A pyDAOS Approach for Enabling Efficient Data Handling in DAOS","authors":"Chandrika Prasad ,&nbsp;Geetha J Dr ,&nbsp;Vinay M ,&nbsp;Manoj V L ,&nbsp;Bharath Vamsi ,&nbsp;D. Malavika Dileepa","doi":"10.1016/j.procs.2025.01.053","DOIUrl":null,"url":null,"abstract":"<div><div>High-Performance Computing (HPC) systems require efficient storage solutions to handle vast amounts of data. Distributed Asynchronous Object Storage (DAOS) is designed for such environments, offering scalable and high performance storage. Our study initially explores the capabilities and performance of DAOS using pyDAOS when integrated with a key-value store (KV store). The existing methodologies are analyzed to identify inefficiencies, particularly in handling large I/O operations. This paper proposes an enhanced approach that incorporates chunking for large I/O operations, automated resource selection, and simplified system administration via server discovery and by fetching configuration details. This results show significant improvements in efficiency, scalability, and usability of DAOS using pyDAOS, making it a robust solution for modern data intensive applications.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"252 ","pages":"Pages 922-933"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-Performance Computing (HPC) systems require efficient storage solutions to handle vast amounts of data. Distributed Asynchronous Object Storage (DAOS) is designed for such environments, offering scalable and high performance storage. Our study initially explores the capabilities and performance of DAOS using pyDAOS when integrated with a key-value store (KV store). The existing methodologies are analyzed to identify inefficiencies, particularly in handling large I/O operations. This paper proposes an enhanced approach that incorporates chunking for large I/O operations, automated resource selection, and simplified system administration via server discovery and by fetching configuration details. This results show significant improvements in efficiency, scalability, and usability of DAOS using pyDAOS, making it a robust solution for modern data intensive applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信