Therapeutic Potential of FTO Demethylase in Metabolism and Disease Pathways.

Chaitanya Sree Somala, Selvaraj Sathyapriya, Nagaraj Bharathkumar, Thirunavukarasou Anand, Damal Chandrasekar Mathangi, Konda Mani Saravanan
{"title":"Therapeutic Potential of FTO Demethylase in Metabolism and Disease Pathways.","authors":"Chaitanya Sree Somala, Selvaraj Sathyapriya, Nagaraj Bharathkumar, Thirunavukarasou Anand, Damal Chandrasekar Mathangi, Konda Mani Saravanan","doi":"10.1007/s10930-025-10250-3","DOIUrl":null,"url":null,"abstract":"<p><p>The crucial involvement of the Fat Mass and Obesity-associated (FTO) protein in both metabolic and non-metabolic diseases has been documented since its discovery. This enzyme, known as FTO, is a demethylase that belongs to the 2-oxoglutarate-dependent nucleic acid demethylases. Its primary function is to target N6-methyladenosine (m<sup>6</sup>A) in RNA, which is crucial in regulating RNA stability, processing, and expression. This review facilitates understanding the FTO gene variations linked to Body Mass Index (BMI) and obesity, resulting in increased vulnerability to type 2 diabetes. While prior reviews have already discussed the link between FTO and BMI and its impact on type 2 diabetes, the current review additionally examines the emerging evidence suggesting a direct influence of the FTO gene on metabolism. Additionally, the paper discusses the alternative role of FTO and emphasizes the endophenotypes in neurological circuits and the demethylase function of FTO in neurodegenerative disorders. The review further examines the impact of FTO on several physiological systems and emphasizes the need to study FTO as a potential multitarget for future research and therapies.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The protein journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10930-025-10250-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The crucial involvement of the Fat Mass and Obesity-associated (FTO) protein in both metabolic and non-metabolic diseases has been documented since its discovery. This enzyme, known as FTO, is a demethylase that belongs to the 2-oxoglutarate-dependent nucleic acid demethylases. Its primary function is to target N6-methyladenosine (m6A) in RNA, which is crucial in regulating RNA stability, processing, and expression. This review facilitates understanding the FTO gene variations linked to Body Mass Index (BMI) and obesity, resulting in increased vulnerability to type 2 diabetes. While prior reviews have already discussed the link between FTO and BMI and its impact on type 2 diabetes, the current review additionally examines the emerging evidence suggesting a direct influence of the FTO gene on metabolism. Additionally, the paper discusses the alternative role of FTO and emphasizes the endophenotypes in neurological circuits and the demethylase function of FTO in neurodegenerative disorders. The review further examines the impact of FTO on several physiological systems and emphasizes the need to study FTO as a potential multitarget for future research and therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信