{"title":"Genotoxicity and fibrosis in human hepatocytes in vitro from exposure to low doses of PBDE-47, arsenic, or both chemicals","authors":"Chonnikarn Jirasit , Panida Navasumrit , Krittinee Chaisatra , Chalida Chompoobut , Somchamai Waraprasit , Varabhorn Parnlob , Mathuros Ruchirawat","doi":"10.1016/j.cbi.2025.111410","DOIUrl":null,"url":null,"abstract":"<div><div>Improper disposal and recycling of electronic waste (e-waste) has been shown to cause extensive environmental pollution and human health effects. Among the pollutants, 2,2′,4,4’ Tetrabromodiphenyl Ether (PBDE-47) and arsenic are highly prevalent. This study aimed to investigate genotoxic and fibrosis effects, and their mechanistic relationships from exposure to PBDE-47, arsenic, or both chemicals in a human hepatocyte epithelial cell line (THLE-2). Non-cytotoxic concentrations of 5 μM PBDE-47 (2848 ppb), 0.5 μM arsenite (37.46 ppb), or co-exposure to both were selected and cells were exposed for 7 days. The co-exposure increased the effect of lipid peroxidation (MDA and 4-HNE) and the expression of inflammatory genes (<em>CXCL6</em>, <em>CXCL8</em>, and <em>TGF-β1</em>) over that of PBDE-47 or arsenite alone. Furthermore, the co-exposure significantly increased the level of mutagenic DNA adducts including MDA-derived DNA adducts (Pyrimido[1,2-<em>a</em>]purin-10(3H)-one, M1dG), 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine; but decreased mRNA expression of an antioxidant defense regulator (<em>NFE2L2</em>) and DNA repair genes (<em>hOGG1</em> and <em>XRCC1</em>). Regarding biological effects, the co-exposure increased cell migration, a hallmark of epithelial-mesenchymal transition (EMT); down-regulated the epithelial expression (<em>E-cadherin</em>); up-regulated mesenchymal expression (<em>Vimentin</em>); and promoted fibrosis expression (up-regulated <em>ACTA2, FSP-1,</em> and <em>COL1A1</em>). Collectively, these findings indicate that the co-exposure significantly induced a cascade of toxicological effects of overexposure to individual chemicals. The observed genotoxicity, abnormal gene expression, and fibrosis in hepatocytes indicate mechanisms and potentially further increase of health hazards than currently recognized in populations exposed to e-waste chemicals.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"410 ","pages":"Article 111410"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725000407","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Improper disposal and recycling of electronic waste (e-waste) has been shown to cause extensive environmental pollution and human health effects. Among the pollutants, 2,2′,4,4’ Tetrabromodiphenyl Ether (PBDE-47) and arsenic are highly prevalent. This study aimed to investigate genotoxic and fibrosis effects, and their mechanistic relationships from exposure to PBDE-47, arsenic, or both chemicals in a human hepatocyte epithelial cell line (THLE-2). Non-cytotoxic concentrations of 5 μM PBDE-47 (2848 ppb), 0.5 μM arsenite (37.46 ppb), or co-exposure to both were selected and cells were exposed for 7 days. The co-exposure increased the effect of lipid peroxidation (MDA and 4-HNE) and the expression of inflammatory genes (CXCL6, CXCL8, and TGF-β1) over that of PBDE-47 or arsenite alone. Furthermore, the co-exposure significantly increased the level of mutagenic DNA adducts including MDA-derived DNA adducts (Pyrimido[1,2-a]purin-10(3H)-one, M1dG), 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine; but decreased mRNA expression of an antioxidant defense regulator (NFE2L2) and DNA repair genes (hOGG1 and XRCC1). Regarding biological effects, the co-exposure increased cell migration, a hallmark of epithelial-mesenchymal transition (EMT); down-regulated the epithelial expression (E-cadherin); up-regulated mesenchymal expression (Vimentin); and promoted fibrosis expression (up-regulated ACTA2, FSP-1, and COL1A1). Collectively, these findings indicate that the co-exposure significantly induced a cascade of toxicological effects of overexposure to individual chemicals. The observed genotoxicity, abnormal gene expression, and fibrosis in hepatocytes indicate mechanisms and potentially further increase of health hazards than currently recognized in populations exposed to e-waste chemicals.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.