George I Gavriilidis, Vasileios Vasileiou, Stella Dimitsaki, Georgios Karakatsoulis, Antonis Giannakakis, Georgios A Pavlopoulos, Fotis Psomopoulos
{"title":"APNet, an explainable sparse deep learning model to discover differentially active drivers of severe COVID-19.","authors":"George I Gavriilidis, Vasileios Vasileiou, Stella Dimitsaki, Georgios Karakatsoulis, Antonis Giannakakis, Georgios A Pavlopoulos, Fotis Psomopoulos","doi":"10.1093/bioinformatics/btaf063","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by revealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches dovetail differential abundance, biostatistics, and machine learning, but often overlook non-linear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking.</p><p><strong>Results: </strong>We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically-informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.</p><p><strong>Availability and implementation: </strong>APNet's R, Python scripts and Cytoscape methodologies are available at https://github.com/BiodataAnalysisGroup/APNet.</p><p><strong>Supplementary information: </strong>Supplementary information can be accessed in Zenodo (10.5281/zenodo.14680520).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Computational analyses of bulk and single-cell omics provide translational insights into complex diseases, such as COVID-19, by revealing molecules, cellular phenotypes, and signalling patterns that contribute to unfavourable clinical outcomes. Current in silico approaches dovetail differential abundance, biostatistics, and machine learning, but often overlook non-linear proteomic dynamics, like post-translational modifications, and provide limited biological interpretability beyond feature ranking.
Results: We introduce APNet, a novel computational pipeline that combines differential activity analysis based on SJARACNe co-expression networks with PASNet, a biologically-informed sparse deep learning model, to perform explainable predictions for COVID-19 severity. The APNet driver-pathway network ingests SJARACNe co-regulation and classification weights to aid result interpretation and hypothesis generation. APNet outperforms alternative models in patient classification across three COVID-19 proteomic datasets, identifying predictive drivers and pathways, including some confirmed in single-cell omics and highlighting under-explored biomarker circuitries in COVID-19.
Availability and implementation: APNet's R, Python scripts and Cytoscape methodologies are available at https://github.com/BiodataAnalysisGroup/APNet.
Supplementary information: Supplementary information can be accessed in Zenodo (10.5281/zenodo.14680520).