{"title":"A hardware-efficient on-implant spike compression processor based on VQ-DAE for brain-implantable microsystems.","authors":"Nazanin Ahmadi-Dastgerdi, Hossein Hosseini-Nejad, Hamid Alinejad-Rokny","doi":"10.1007/s11517-025-03317-x","DOIUrl":null,"url":null,"abstract":"<p><p>High-density implantable neural recording microsystems deal with a huge amount of data. Since the wireless transmission of the raw recorded data leads to excessive bandwidth requirements, spike compression approaches have become vital to such systems. The compression processor is designed to be implemented on the implant and so to avoid any tissue damage, the hardware cost of the processor is of great importance. The vector quantization (VQ) algorithm has proven to be effective in compression applications and spike compression systems as well. In this paper, benefiting from the capabilities of the denoising autoencoders (DAE), we propose a solution to enhance the compression performance of the VQ-based approach in terms of both reconstruction accuracy and hardware efficiency. Moreover, we develop a hardware-efficient multi-channel architecture for the proposed VQ-DAE processor. The processor has been implemented in a 180-nm CMOS technology and the validation and verification processes confirm that it provides satisfactory results. It achieves an average signal-to-noise-distortion (SNDR) of 14.51 at a spike compression ratio (SCR) of 30. Operated at a clock frequency of 192 kHz and a supply voltage of 1.8 V, the circuit consumes a power of 4.88 <math><mrow><mi>μ</mi> <mi>W</mi></mrow> </math> and a silicon area of 0.14 mm<sup>2</sup> per channel.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03317-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
High-density implantable neural recording microsystems deal with a huge amount of data. Since the wireless transmission of the raw recorded data leads to excessive bandwidth requirements, spike compression approaches have become vital to such systems. The compression processor is designed to be implemented on the implant and so to avoid any tissue damage, the hardware cost of the processor is of great importance. The vector quantization (VQ) algorithm has proven to be effective in compression applications and spike compression systems as well. In this paper, benefiting from the capabilities of the denoising autoencoders (DAE), we propose a solution to enhance the compression performance of the VQ-based approach in terms of both reconstruction accuracy and hardware efficiency. Moreover, we develop a hardware-efficient multi-channel architecture for the proposed VQ-DAE processor. The processor has been implemented in a 180-nm CMOS technology and the validation and verification processes confirm that it provides satisfactory results. It achieves an average signal-to-noise-distortion (SNDR) of 14.51 at a spike compression ratio (SCR) of 30. Operated at a clock frequency of 192 kHz and a supply voltage of 1.8 V, the circuit consumes a power of 4.88 and a silicon area of 0.14 mm2 per channel.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).