Dentin sialoprotein acts as an angiogenic factor through association with the membrane receptor endoglin.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ximin Xu, Jing Fu, Guobin Yang, Zhi Chen, Shuo Chen, Guohua Yuan
{"title":"Dentin sialoprotein acts as an angiogenic factor through association with the membrane receptor endoglin.","authors":"Ximin Xu, Jing Fu, Guobin Yang, Zhi Chen, Shuo Chen, Guohua Yuan","doi":"10.1016/j.jbc.2025.108279","DOIUrl":null,"url":null,"abstract":"<p><p>Dentin sialophosphoprotein (DSPP) is highly expressed by odontoblasts, the cell type responsible for dentin formation. DSPP therefore has been extensively studied as a regulator of dentinogenesis. Besides defective dentinogenesis in teeth, Dspp deficient mice also display reduced blood vessels in the transition zone of femurs. However, the exact role and underlying mechanisms of DSPP in the process of blood vessel formation remain enigmatic. Here, we show that dentin sialoprotein (DSP), the NH<sub>2</sub>-terminal cleavage product of DSPP, promotes the migration and capillary-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as the migration and endothelial differentiation of human dental pulp stem cells (DPSCs). Further experiments demonstrate that endoglin (ENG), a membrane receptor associated with angiogenesis, can be co-immunoprecipitated by DSP. Flow cytometry assays show that HUVECs and DPSCs, two cell types with endogenous ENG expression, display obvious binding signals of supplemented DSP protein, but human embryonic kidney 293T (HEK293T) cells, a cell type without endogenous ENG expression do not. Pretreatment with an anti-ENG antibody or knockdown of ENG inhibits the binding of DSP to DPSCs, while ENG overexpression enhances binding signals of DSP to HEK293T cells. Meanwhile, multiple experiments demonstrate that knockdown of ENG impairs DSP-induced migration and endothelial differentiation of DPSCs. Therefore, ENG is essential for the angiogenic effects of DSP. Moreover, Dspp deficient mice exhibit defective capillary formation in molars, supporting the positive role of DSP in blood vessel development. Collectively, these findings identify that DSP acts as an angiogenic factor through association with ENG.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108279"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108279","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dentin sialophosphoprotein (DSPP) is highly expressed by odontoblasts, the cell type responsible for dentin formation. DSPP therefore has been extensively studied as a regulator of dentinogenesis. Besides defective dentinogenesis in teeth, Dspp deficient mice also display reduced blood vessels in the transition zone of femurs. However, the exact role and underlying mechanisms of DSPP in the process of blood vessel formation remain enigmatic. Here, we show that dentin sialoprotein (DSP), the NH2-terminal cleavage product of DSPP, promotes the migration and capillary-like structure formation of human umbilical vein endothelial cells (HUVECs) as well as the migration and endothelial differentiation of human dental pulp stem cells (DPSCs). Further experiments demonstrate that endoglin (ENG), a membrane receptor associated with angiogenesis, can be co-immunoprecipitated by DSP. Flow cytometry assays show that HUVECs and DPSCs, two cell types with endogenous ENG expression, display obvious binding signals of supplemented DSP protein, but human embryonic kidney 293T (HEK293T) cells, a cell type without endogenous ENG expression do not. Pretreatment with an anti-ENG antibody or knockdown of ENG inhibits the binding of DSP to DPSCs, while ENG overexpression enhances binding signals of DSP to HEK293T cells. Meanwhile, multiple experiments demonstrate that knockdown of ENG impairs DSP-induced migration and endothelial differentiation of DPSCs. Therefore, ENG is essential for the angiogenic effects of DSP. Moreover, Dspp deficient mice exhibit defective capillary formation in molars, supporting the positive role of DSP in blood vessel development. Collectively, these findings identify that DSP acts as an angiogenic factor through association with ENG.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信