{"title":"An Efficient Robust Optimization Method for Two-Bar Structures under Uncertain Loading","authors":"Xinze Guo, Shunyi Shi, Kemin Zhou","doi":"10.1134/S0025654424604646","DOIUrl":null,"url":null,"abstract":"<p>Uncertainty is omnipresent in manufacturing and engineering community. This paper develops an efficient robust optimization framework for a two-bar structural model under uncertain loading, which includes magnitude and direction uncertainty following Gaussian distribution. This framework aims to simultaneously minimize the expectancy and standard deviation of structural compliance with volume constraints. A reasonable and efficient estimation of the statistical moment of structural compliance is recognized the critical to the probability-based RTO problem. To address the computational challenges associated with high dimensionality in traditional surrogate models, a decoupling technique based on non-intrusive polynomial chaos expansion is developed. Such a numerical evaluation tool is generic for different types of structures. In addition, an analytical expression based on a two-bar structure is derived as a standard reference. The cross-sectional area and angle with horizontal direction of each bar are taken as design variables and optimization is achieved using the optimality criteria. Numerical examples demonstrate that the accuracy and efficiency of the reported algorithm are significantly improved compared to conventional methods such as polynomial chaos expansion and Monte Carlo simulation. The optimized designs prove a better robust performance than their counterparts.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 5","pages":"2892 - 2905"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424604646","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Uncertainty is omnipresent in manufacturing and engineering community. This paper develops an efficient robust optimization framework for a two-bar structural model under uncertain loading, which includes magnitude and direction uncertainty following Gaussian distribution. This framework aims to simultaneously minimize the expectancy and standard deviation of structural compliance with volume constraints. A reasonable and efficient estimation of the statistical moment of structural compliance is recognized the critical to the probability-based RTO problem. To address the computational challenges associated with high dimensionality in traditional surrogate models, a decoupling technique based on non-intrusive polynomial chaos expansion is developed. Such a numerical evaluation tool is generic for different types of structures. In addition, an analytical expression based on a two-bar structure is derived as a standard reference. The cross-sectional area and angle with horizontal direction of each bar are taken as design variables and optimization is achieved using the optimality criteria. Numerical examples demonstrate that the accuracy and efficiency of the reported algorithm are significantly improved compared to conventional methods such as polynomial chaos expansion and Monte Carlo simulation. The optimized designs prove a better robust performance than their counterparts.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.