M. D. Umbharatwala, Manmohan Dass Goel, Gaurav Tiwari, Nikhil Andraskar
{"title":"Numerical Study on Performance Evaluation of Alumina 99.6%, Kevlar®, Aluminium Composite Armour Panels","authors":"M. D. Umbharatwala, Manmohan Dass Goel, Gaurav Tiwari, Nikhil Andraskar","doi":"10.1134/S0025654424605172","DOIUrl":null,"url":null,"abstract":"<p>The current study is focused on evaluating the effectiveness of composite armour made from ceramic, fabric and metal, employing various configurations. Additionally, it incorporates Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis to compare the performance of different configurations of composite armour plates having 20 mm thickness against high-velocity hard steel core armour-piercing projectiles, particularly for vehicle armour applications. The ceramic component of the armour comprises hardened alumina (99.6%), Kevlar<sup>®</sup> fabric-based fibre-matrix composites, and an epoxy blend reinforced with carbon nanotubes (CNTs). The design of the armour prioritized maintaining a ceramic tile as the frontal impact surface, complemented by an aluminium (Al 2024-T3) plate and a CNT-reinforced Kevlar<sup>®</sup> composite on the rear. The armour was engineered as a functionally graded composite material with varying levels of hardness and toughness. To ensure equitable comparison across armour plates, the total thickness of the composite was consistently set at 20 mm, and its performance was assessed under two distinct impact velocities: 725 and 550 m/s. A multi-criterion based decision-making (MCDM) approach was employed to comprehensively analyse the armour’s performance across multiple parameters. The study shows that the stacking sequence of the materials significantly alters the ballistic resistance of composite panel despite possessing similar arial density. Also, Certain configurations outperforms others despite having lesser arial density.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 5","pages":"3068 - 3096"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424605172","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current study is focused on evaluating the effectiveness of composite armour made from ceramic, fabric and metal, employing various configurations. Additionally, it incorporates Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis to compare the performance of different configurations of composite armour plates having 20 mm thickness against high-velocity hard steel core armour-piercing projectiles, particularly for vehicle armour applications. The ceramic component of the armour comprises hardened alumina (99.6%), Kevlar® fabric-based fibre-matrix composites, and an epoxy blend reinforced with carbon nanotubes (CNTs). The design of the armour prioritized maintaining a ceramic tile as the frontal impact surface, complemented by an aluminium (Al 2024-T3) plate and a CNT-reinforced Kevlar® composite on the rear. The armour was engineered as a functionally graded composite material with varying levels of hardness and toughness. To ensure equitable comparison across armour plates, the total thickness of the composite was consistently set at 20 mm, and its performance was assessed under two distinct impact velocities: 725 and 550 m/s. A multi-criterion based decision-making (MCDM) approach was employed to comprehensively analyse the armour’s performance across multiple parameters. The study shows that the stacking sequence of the materials significantly alters the ballistic resistance of composite panel despite possessing similar arial density. Also, Certain configurations outperforms others despite having lesser arial density.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.