Normality concerning the sequence of multiple functions

IF 1.4 3区 数学 Q1 MATHEMATICS
Dongmei Wei, Fei Li, Yan Xu
{"title":"Normality concerning the sequence of multiple functions","authors":"Dongmei Wei,&nbsp;Fei Li,&nbsp;Yan Xu","doi":"10.1007/s13324-025-01024-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\{f_n\\}\\)</span> be a sequence of meromorphic functions defined in a domain <i>D</i>, and let <span>\\(\\{\\psi _n\\}\\)</span> be a sequence of holomorphic functions on <i>D</i>, whose zeros are multiple, such that <span>\\(\\psi _n\\rightarrow \\psi \\)</span> converges locally uniformly in <i>D</i>, where <span>\\(\\psi (\\not \\equiv 0)\\)</span> is holomorphic in <i>D</i>. If, (1) <span>\\(f_n\\ne 0\\)</span> and <span>\\(f_n^{(k)}\\ne 0\\)</span>; (2) all zeros of <span>\\(f_n^{(k)}-\\psi _n\\)</span> have multiplicities at least <span>\\((k+2)/k\\)</span>, then <span>\\(\\{f_n\\}\\)</span> is normal in <i>D</i>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01024-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\{f_n\}\) be a sequence of meromorphic functions defined in a domain D, and let \(\{\psi _n\}\) be a sequence of holomorphic functions on D, whose zeros are multiple, such that \(\psi _n\rightarrow \psi \) converges locally uniformly in D, where \(\psi (\not \equiv 0)\) is holomorphic in D. If, (1) \(f_n\ne 0\) and \(f_n^{(k)}\ne 0\); (2) all zeros of \(f_n^{(k)}-\psi _n\) have multiplicities at least \((k+2)/k\), then \(\{f_n\}\) is normal in D.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信