{"title":"Stability analysis and dynamical behavior of optimal mean-based iterative methods","authors":"Himani Sharma, Munish Kansal","doi":"10.1007/s10910-024-01674-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we employed the techniques of complex dynamics to perform stability analysis of an optimal mean-based family of iterative methods of order four. Taking into consideration the stability aspect of the specified method, one can describe the method’s sensitivity to the initial guesses. A rational function corresponding to the iterative family is developed. The convergence and stability of a certain method can be analyzed upon finding the fixed points, critical points, periodic points, etc. of the rational function. Furthermore, the dynamical and parametric planes are drawn which help us to detect the stable as well as non-stable regions. It has been observed that stable iterative methods generally yield better performance on complex problems compared to unstable methods. This observation has been supported by numerical experiments that compare our proposed family with some existing methods for representing some chemistry problems, like conversion in a chemical reactor, equations of state, and continuous stirred tank reactor problem.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"383 - 405"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01674-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we employed the techniques of complex dynamics to perform stability analysis of an optimal mean-based family of iterative methods of order four. Taking into consideration the stability aspect of the specified method, one can describe the method’s sensitivity to the initial guesses. A rational function corresponding to the iterative family is developed. The convergence and stability of a certain method can be analyzed upon finding the fixed points, critical points, periodic points, etc. of the rational function. Furthermore, the dynamical and parametric planes are drawn which help us to detect the stable as well as non-stable regions. It has been observed that stable iterative methods generally yield better performance on complex problems compared to unstable methods. This observation has been supported by numerical experiments that compare our proposed family with some existing methods for representing some chemistry problems, like conversion in a chemical reactor, equations of state, and continuous stirred tank reactor problem.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.