On Nonstationary Contact Problems for Anisotropic Composites in Nonclassical Areas

IF 0.6 4区 工程技术 Q4 MECHANICS
V. A. Babeshko, O. V. Evdokimova, S. B. Uafa, V. S. Evdokimov, O. M. Babeshko
{"title":"On Nonstationary Contact Problems for Anisotropic Composites in Nonclassical Areas","authors":"V. A. Babeshko,&nbsp;O. V. Evdokimova,&nbsp;S. B. Uafa,&nbsp;V. S. Evdokimov,&nbsp;O. M. Babeshko","doi":"10.1134/S0025654424603562","DOIUrl":null,"url":null,"abstract":"<p>For the first time, an exact solution is given to the contact problem of the non-stationary action of a wedge-shaped, right-angled stamp occupying the first quadrant, which act on a deformable multilayer base. The base, which is affected by a rigid stamp in the shape of a quarter plane, can be a multilayer anisotropic composite material. It is assumed that it is possible to construct a Green’s function for it, which makes it possible to construct an integral equation of the contact problem. The geometric Cartesian coordinates of the first quadrant and the time parameter, which varies along the entire axis, are taken as parameters describing the integral equation. It is assumed that time in the boundary value problem under consideration follows from negative infinity, crosses the origin and grows to infinity, covering the entire time interval. Thus, there is no requirement in the formulation of the Cochet problem when it is necessary to set initial conditions. In this formulation, the problem is reduced to solving the three-dimensional Wiener–Hopf integral equation. The authors are not aware of any attempts to solve this problem analytically or numerically. The investigation and solution of the contact problem was carried out using block elements in a variant applicable to integral equations. It is proved that the constructed solution exactly satisfies the integral equation. The properties of the constructed solution are studied. In particular, it is shown that the solution of the non-stationary contact problem has a higher concentration of contact stresses at the edges of the stamps and at the angular point of the stamp, compared with a static case. This corresponds to the observed in practice more effective non-stationary effect of rigid bodies on deformable media, for their destruction, compared with static. The results may be useful in engineering practice, seismology, in assessing the impact of incoming waves on foundations, in the areas of using Wiener–Hopf integral equations in probability theory and statistics, and other areas.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 5","pages":"2667 - 2673"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603562","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, an exact solution is given to the contact problem of the non-stationary action of a wedge-shaped, right-angled stamp occupying the first quadrant, which act on a deformable multilayer base. The base, which is affected by a rigid stamp in the shape of a quarter plane, can be a multilayer anisotropic composite material. It is assumed that it is possible to construct a Green’s function for it, which makes it possible to construct an integral equation of the contact problem. The geometric Cartesian coordinates of the first quadrant and the time parameter, which varies along the entire axis, are taken as parameters describing the integral equation. It is assumed that time in the boundary value problem under consideration follows from negative infinity, crosses the origin and grows to infinity, covering the entire time interval. Thus, there is no requirement in the formulation of the Cochet problem when it is necessary to set initial conditions. In this formulation, the problem is reduced to solving the three-dimensional Wiener–Hopf integral equation. The authors are not aware of any attempts to solve this problem analytically or numerically. The investigation and solution of the contact problem was carried out using block elements in a variant applicable to integral equations. It is proved that the constructed solution exactly satisfies the integral equation. The properties of the constructed solution are studied. In particular, it is shown that the solution of the non-stationary contact problem has a higher concentration of contact stresses at the edges of the stamps and at the angular point of the stamp, compared with a static case. This corresponds to the observed in practice more effective non-stationary effect of rigid bodies on deformable media, for their destruction, compared with static. The results may be useful in engineering practice, seismology, in assessing the impact of incoming waves on foundations, in the areas of using Wiener–Hopf integral equations in probability theory and statistics, and other areas.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanics of Solids
Mechanics of Solids 医学-力学
CiteScore
1.20
自引率
42.90%
发文量
112
审稿时长
6-12 weeks
期刊介绍: Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信