Chinese sign language recognition and translation with virtual digital human dataset

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Hao Zhang , Zenghui Liu , Zhihang Yan , Songrui Guo , ChunMing Gao , Xiyao Liu
{"title":"Chinese sign language recognition and translation with virtual digital human dataset","authors":"Hao Zhang ,&nbsp;Zenghui Liu ,&nbsp;Zhihang Yan ,&nbsp;Songrui Guo ,&nbsp;ChunMing Gao ,&nbsp;Xiyao Liu","doi":"10.1016/j.displa.2025.102989","DOIUrl":null,"url":null,"abstract":"<div><div>Sign language recognition and translation are crucial for communication among individuals who are deaf or mute. Deep learning methods have advanced sign language tasks, surpassing traditional techniques in accuracy through autonomous data learning. However, the scarcity of annotated sign language datasets limits the potential of these methods in practical applications. To address this, we propose using digital twin technology to build a virtual human system at the word level, which can automatically generate sign language sentences, eliminating human input, and creating numerous sign language data pairs for efficient virtual-to-real transfer. To enhance the generalization of virtual sign language data and mitigate the bias between virtual and real data, we designed novel embedding representations and augmentation methods based on skeletal information. We also established a multi-task learning framework and a pose attention module for sign language recognition and translation. Our experiments confirm the efficacy of our approach, yielding state-of-the-art results in recognition and translation.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"87 ","pages":"Article 102989"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000265","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Sign language recognition and translation are crucial for communication among individuals who are deaf or mute. Deep learning methods have advanced sign language tasks, surpassing traditional techniques in accuracy through autonomous data learning. However, the scarcity of annotated sign language datasets limits the potential of these methods in practical applications. To address this, we propose using digital twin technology to build a virtual human system at the word level, which can automatically generate sign language sentences, eliminating human input, and creating numerous sign language data pairs for efficient virtual-to-real transfer. To enhance the generalization of virtual sign language data and mitigate the bias between virtual and real data, we designed novel embedding representations and augmentation methods based on skeletal information. We also established a multi-task learning framework and a pose attention module for sign language recognition and translation. Our experiments confirm the efficacy of our approach, yielding state-of-the-art results in recognition and translation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信